
P r i t l l G e S u b r o u t i n e s R e f e r e n c e V :
Event Synchronization
Revision 22.0

\ D O C 1 0 2 1 3 - 1 L A

r

Subroutines Reference V
Event Synchronization

First Edition

John Breithaupt and
Glenn Morrow

This guide documents the software operation
of the Prime Computer and its supporting
systems and utilities as implemented at

Master Disk Revision Level 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

Copyright Information
The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no
responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.
Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer,
Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 4050, 4150, 6350,
6550, 9650, 9655, 9750, 9755, 9950, 9955, 9955II, DISCOVER, EDMS, FM+, INFO/BASIC,
INFORM, Prime INFORMATION, Prime INFORMATION CONNECTION, Prime
INFORMATION EXL, MDL, MIDAS, MIDASPLUS, MXCL, PRIME EXL, PRIME
MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME TIMER, PRIMAN,
PRIMELINK, PRIMENET, PRIMEWAY, PRIMEWORD, PRIMIX, PRISAM, PRODUCER,
Prime INFORMATION/pc, PST 100, PT25, PT45, PT65, PT200, PT250, PW153, PW200,
PW250, RINGNET and SIMPLE are trademarks of Prime Computer, Inc.

Printing History
First Edition (DOC-10213-1LA) 1988 for Revision 22.0

Credits
E d i t o r i a l : T h e l m a H e n n e r ^
Design: Carol Smith
Project Support: Nancy Lewis, Joan Karp, Helen Raizen, Mei Ng, Evelyn Tate
Illustration: Julie Cyphers, Anne Marie Fantasia, Roseanne Dickey
Document Preparation: Mary Mixon, Kathy Normington
Composition: Julie Cyphers, Sharon Temple
Production: Judy Gordon

How To Order Technical Documents
To order copies of documents, or to obtain a catalog, a price list:
United States Only: Call Prime Telemarketing, toll free, at 1-800-343-2533, Monday through
Friday, 8:30 a.m. to 5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

Customer Support Center
Prime provides the following toll-free numbers for customers in the United States needing
service:

1-800-322-2838 (Massachusetts)
1-800-541-8888 (Alaska and Hawaii)
1-800-343-2320 (within other states)

For other locations, contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of this
book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

Contents

r
r

About This Book xi

Parti
Overview

Overview of Event Synchronization 1-1
Introduction 1-1
Timers 1-2
InterServer Communications 1-2
Include Files 1-3

Retrieving Error Messages 1-4

Part II
Event Synchronizers and Event Groups

Event Synchronizers 2-1
Introduction 2-1
Event Synchronizer Subroutines 2-2
Include Files for Synchronizers 2-4
Subroutine Descriptions 2-4
SYN$CREA 2-5
SYN$POST 2-7
SYN$WAIT 2-9
SYN$TMWT 2-11
SYN$RTRV 2-13
SYN$DEST 2-15

Event Groups 3-1
Introduction 3-1
Event Group Subroutines 3-1
Subroutine Descriptions 3-4
SYN$GCRE 3-5
SYN$MVTO 3-7
SYN$REMV 3-9

SYN$GWT

SYN$GTWT
SYN$GRTR
SYN$GDST

Retrieving Information About
Event Synchronization
Introduction
Subroutine Descriptions
SYN$CHCK
SYN$GCHK
SYN$INFO
SYN$LSIG
SYN$LIST

SYN$GLST
Part III
Timers

Timers
Introduction
Timer Subroutines
Include Files for Timers
Subroutine Descriptions
TMR$CREA
TMR$DEST
TMR$SABS
TMR$SINT
TMR$SREP
TMR$CANL
TMR$GTMR
TMR$LIST

3-11
3-13
3-15
3-18

4-1
4-1
4-1
4-2
4-4
4-6
4-8

4-10
4-12

5-1
5-1
5-1
5-4
5-5
5-6
5-8
5-9

5-11
5-13
5-15
5-16
5-19

VI

Part IV
InterServer Communications

6 General Discussion of InterServer
Communications 6-1

Introduction 6-1

A Choice of Message Types 6-2

Programming Considerations 6-3

7 Server Names 7-1

Introduction 7-1

Server Name Subroutines 7-2

Low Level Names 7-2

Cataloging Low Level Names 7-3

ISN$C 7-5

ISN$L 7-7

ISN$RC 7-8

ISN$UC 7-9

SRS$GN 7-10

SRS$GP 7-11

SRS$LN 7-13

8 Establishing a Session 8-1
Introduction 8-1
Session Requests and Session Numbers 8-1

Establishing a Session 8-2
IS$RS 8-3

IS$GRQ 8-6
IS$AS 8-9

IS$GRS 8-12

VII

9 S e s s i o n C o n fi g u r a t i o n 9 - 1
I n t r o d u c t i o n 9 - 1
The Default Session Configuration 9-1
The Session Configuration Block 9-2
G l o b a l S e s s i o n P a r a m e t e r s 9 - 3
L o c a l S e s s i o n P a r a m e t e r s 9 - 5
C o n f i g u r i n g S y n c h r o n i z e r s 9 - 7 „ ^ ^
S e s s i o n S y n c h r o n i z e r s L i s t 9 - 9 "
U s i n g S y n c h r o n i z e r s 9 - 1 0

1 0 M e s s a g e E x c h a n g e 1 0 - 1
I n t r o d u c t i o n 1 0 - 1
Message Exchange Subrout ines 10-2
C r e a t i n g a M e s s a g e 1 0 - 3 ^ ^
I S $ A B 1 0 - 5
I S $ F B 1 0 - 7
I S $ S M 1 0 - 9
I S $ R M 1 0 - 1 2

11 Session Termination and Exceptions ill
I n t r o d u c t i o n 1 1 - 1 j
T e r m i n a t i o n S u b r o u t i n e s 1 1 - 1
The ExceptionPending Synchronizer 11-2
I S $ T S H - 3
I S $ G E H - 5
I S $ C E H - 7

1 2 C o n n e c t M e s s a g e s 1 2 - 1
I n t r o d u c t i o n 1 2 - 1
A Connect Message Exchange 12-2

VIII

13 Remote Sessions 13-1

Introduction 13-1
Remote User ID 13-1
Network Events 13-2

14 Retrieving Session Information 14-1

Introduction 14-1

IS$GSO 14-2

IS$GSA 14-4

IS$GSS 14-7
IS$STA 14-10

Appendices
A Quick Reference to Calling Sequences A-1

B Sample Programs B-l

Programs Accessing Synchronizers and Groups B-l

Programs Accessing Timers B-6

Programs Using InterServer Communications B-8

C Status Codes C-l

Synchronizer Status Codes C-l

Synchronizer WhatJHappened Codes C-2
Timer Status Codes C-2
ISC Status Codes C-3
ISC Response Codes Returned by IS$GRS C-4
ISC Exception Codes Returned by IS$GE C-5
ISC Phase Codes Returned by IS$GSS C-5
SRS Status Codes C-5

D Limits D-l
Synchronizer and Timer Limits D-l
ISC Limits D-l

IX

D a t a S t r u c t u r e s e - i
S y n c h r o n i z e r I n f o r m a t i o n R e c o r d E - 1
Absolute Timer Informat ion Record E-1
In te rva l Timer In fo rmat ion Record E-1

Repetit ive Timer Information Record E-2
A t t r i b u t e I d e n t i t y B l o c k E - 2
I n i t i a t o r A u t h e n t i c a t i o n B l o c k E - 2 - -■
L o w L e v e l N a m e E - 3 *

M e s s a g e S p e c i fi e r E - 3
S e s s i o n C o n fi g u r a t i o n B l o c k E - 4
S e s s i o n S t a t i s t i c s B l o c k E - 5
S e s s i o n S t a t u s B l o c k E - 5
S e s s i o n S y n c h r o n i z e r s L i s t E - 6

T a r g e t A u t h e n t i c a t i o n B l o c k E - 6 r

D a t a T y p e E q u i v a l e n t s fi

Indexes
Index of Subroutines by Function FX-1
Index o f Sub rou t i nes by Name SX-1
I n d e x X - l ^ ^

About This Book

Overview of This Series
The Subroutines Reference series consists of five volumes. These volumes are organized by the
functions that the subroutines perform. A brief summary of the contents of each volume is given
below.

Volume I
Introduction to the five-volume series. It describes the nature and functions of Prime's
standard subroutines and subroutine libraries. It explains how subroutines can be called from
programs written in Prime's programming languages: C, CBL, FORTRAN IV, FORTRAN 77,
Pascal, PLA, BASIC/VM, and PMA.

Volume II
Describes file system subroutines, including subroutines for the search rules facility. It also
describes subroutines for the manipulation of EPFs in the execution environment and the use
of command environment functions.

Volume DI
Describes system subroutines. The subroutines covered in this volume are general system calls
to the operating system and the standard system library. This volume includes memory
allocation and System Information and Metering (SIM) subroutines.

Volume IV
Describes the Input/Output Control System (IOCS) libraries and other I/O-related subroutines.
It documents both device-dependent and device-independent subroutines and Sync and Async
device-driver subroutines. It also documents Application libraries, the SORT libraries, and
MATHLIB, the FORTRAN Matrix library. Many of these subroutines are of special interest
for FORTRAN programmers.

Volume V
Describes event synchronization. It documents subroutines used to create and manipulate
event synchronizers, and two facilities that use event synchronizers: timers and the InterServer
Communications (ISC) facility.

F i r s t E d i t i o n x i

Subroutines Reference V: Event Synchronization

Specifics of This Volume
Volume V describes three features of the PRIMOS® operating system: event synchronizers,
timers, and the InterServer Communications facility for message exchange between processes.

• Part I of this book, consisting of Chapter 1, offers a general overview of event
synchronization and a brief introduction to its use by two PRIMOS facilities: the
Timers facility and the InterServer Communications (ISC) facility. It also provides
programming information that is applicable to all programs that use event
synchronization.

• Part II, consisting of Chapters 2 through 4, describes in detail how to create, use,
destroy, and retrieve information about event synchronizers and event groups.

• Part III, consisting of Chapter 5, describes how to create, use, destroy, and retrieve
information about timers.

• Part IV, consisting of Chapters 6 through 14, describes in detail the InterServer
Communications (ISC) facility, which makes it possible for processes that are running
simultaneously to exchange messages. These processes may be running on the same
system or on two different systems connected by PRIMENET™. Message exchange is
coordinated by using event synchronizers.

The following three indexes enable the reader to find information quickly:

• The Index of Subroutines by Function, a list of all of the subroutines in the five-
volume series, grouped by the general types of function that they perform. Use this
index to find out which subroutines perform a particular function, and then use the
Index of Subroutines by Name to locate the individual subroutines.
The Index of Subroutines by Name, an alphabetical list by name of all of the
subroutines in the five-volume series. It lists the volume, chapter, and page number of
the reference material for each subroutine.
The Index, a list of the topics treated in this volume. Use this index to find out where
in this volume a particular topic, process, or term is described.

Suggested References
The other volumes of the Subroutines Reference document set are the following:
Subroutines Reference I: Using Subroutines (DOC10080-2LA)
Subroutines Reference II: File System (DOC10081-1LA) and updates:

Update for Rev. 21.0 (UPD10081-11A)
Update for Rev. 22.0 (UPD10081-12A)

^ >

XII First Edition

About This Book

r
r

Subroutines Reference III: Operating System (DOC 10082-1 LA) and updates:

Update for Rev. 21.0 (UPD 10082-11 A)
Update for Rev. 22.0 (UPD 10082-12A)

Subroutines Reference IV: Libraries and I/O (DOC10083-1LA) and updates:

Update for Rev. 21.0 (UPD 10083-11 A)
Update for Rev. 22.0 (UPD10083-12A)

The five volumes of the Subroutines Reference and their current updates can be ordered as a set
as DCP10068.

The PRIMOS User's Guide (DOC4130-5LA) contains information on system use, directory
structure, the condition mechanism, CPL files, ACLs, and how to load and execute files with
external subroutines. Language programmers will also need the reference guides for their
particular languages.
The following related Prime publications are also available and helpful to the programmer:

PRIMOS Commands Reference Guide (DOC3108-7LA)

Programmer's Guide to BIND and EPFs (DOC8691-1LA) and its update:

Update for Rev. 22.0 (UPD8691-11A)

Advanced Programmer's Guide, Volume 0: Introduction and Error Codes (DOC10066-3LA)

Advanced Programmer's Guide, Volume I: BIND and EPFs (DOC 10055-1LA)

Advanced Programmer's Guide, Volume II: File System (DOC10056-2LA)

Advanced Programmer's Guide, Volume III: Command Environment (DOC 10057-1 LA)

System Administrator's Guide, Volume I: System Configuration (DOC10131-2LA)

System Administrator's Guide, Volume II: Communication Lines and Controllers
(DOC10132-2LA).

System Administrator's Guide, Volume III: System Access (DOC10133-2LA).
User's Guide to Prime Network Services (DOC10115-1LA)

Operator's Guide to Prime Networks (DOC10114-1LA)
PRIMENET Planning and Configuration Guide (DOC7532-3LA)

System Architecture Reference Guide (DOC9473-3LA)

F i r s t E d i t i o n x j j j

Subroutines Reference V: Event Synchronization

Prime Documentation Conventions
The following conventions are used in command formats, statement formats, and in examples
throughout this document. Examples illustrate the uses of these commands and statements in
typical applications.

Convention Explanation Example
UPPERCASE

italics

Parentheses
()

Hyphen

Boldface

In subroutine descriptions, words in upper
case indicate the names of commands,
options, statements, or keywords. Enter
them in either uppercase or lowercase.

Words in italics represent input or output
parameters of subroutines, or other vari
ables.
In subroutine calls, you must enter parenthe
ses exactly as shown.
Wherever a hyphen appears as the first
character of an option, it is a required part
of that option.
New terms appear in boldface.

SYN$CREA

sync Jdentif ier

call is$ce(num, code)

ICE -SERVER

server

xiv First Edition

Part I, Overviewr !

r

r

rr

Overview of Event Synchronization

Introduction
This volume describes event synchronization and two facilities that use event synchronization:
the Timers facility and the InterServer Communications (ISC) facility. Event synchronization is
a feature of PRIMOS that makes it possible to coordinate the execution of a process with
specific events exterior to the process. Timers use event synchronization to enable processes to
make their own execution time-dependent; a running process sets a timer and is informed when
that timer elapses. The InterServer Communications facility uses event synchronization to permit
a running process to exchange messages with another concurrently running process. Timers and
ISC are included in Rev. 22.0 and subsequent revisions of PRIMOS.
Event synchronization is made possible by event synchronizers. An event synchronizer is an
indicator on which PRIMOS posts a notice for each occurrence of a particular event. This
notice informs the process that the event has occurred.
While awaiting notification of an event, the process can either suspend or continue its execution.
If the process has suspended its execution, notification of an event causes it to resume
processing. If the process has not suspended its execution, PRIMOS posts a notice on a
synchronizer associated with the process when the event occurs. This notice is available to the
process, but does not interrupt its ongoing processing.
A process can create its own event synchronizers and associate each synchronizer with a specific
event. When the event occurs, PRIMOS posts a notice on the associated synchronizer.
A process can group two or more synchronizers into an event group. When an event occurs,
PRIMOS posts a notice on the associated synchronizer that is within the event group. The
process can check the event group to determine whether a notice has been posted on any of its
member synchronizers. If a notice has been posted on a member synchronizer, the process can
also determine which synchronizer has been notified. If there are no notices on any of the event
synchronizers within the group, the process can either continue its own operations, or wait on
the event group. Waiting on an event group suspends the process' operations until a notice is
posted on any one of the synchronizers in the group.

F i r s t E d i t i o n 1 - 1

Subroutines Reference V: Event Synchronization

Note
The facilities described in this volume can synchronize the execution
of two or more user processes running within a single server. For
example, one process within the server can post a notice on a
synchronizer to notify other user processes within the server that an
event occurred. At Rev. 22.0, PRIMOS associates each process with
its own server when the process is initialized; therefore,
synchronization within a server is possible only for PRIMIX™ child
processes. A PRIMIX child process is always a member of its
parent's server.

Timers
Timers are a PRIMOS facility that provide for time-dependent process synchronization. Timers
can post notices on event synchronizers after an elapsed interval, periodically at a fixed interval
of time, or at a particular time on the system clock. User processes can request timers to post
notices at any appropriate time or intervals of time.

InterServer Communications
InterServer Communications (ISC) is a PRIMOS facility that provides for message exchange
between two concurrently running servers. ISC uses the term server to refer to a single process
or a group of closely cooperating processes. PRIMOS places each terminal or phantom process
in its own server when the process is initialized. A PRIMIX child process, however, is placed in
its parent's server. A process can determine its own server name and can also make it possible
for other processes to look up its server name. You must know the server name of another -»
server before you can exchange messages with that server. Server name operations are described ̂ j
in Chapter 7.
ISC provides each server with several event synchronizers that are associated with specific
events. It uses these synchronizers to inform each server of the operations performed by the
other server. These operations include the establishment of a link between the servers and the
exchange of messages. This permits a server to either suspend processing or perform other
operations while awaiting a specific ISC event.
Message exchange occurs within a session. A session is a one-to-one link between two active
servers. To create this link, one server requests the session and the other accepts the session
request. Only two servers can participate in a session; each server can both send and receive
multiple messages with the other server participating in the session. A server that is not a
participant in the session cannot read messages or otherwise interact with the session. The
session continues until either of the servers explicitly terminates the session, or a server is
terminated (for example, by a user logout).

1 _ 2 F i r s t E d i t i o n

Overview of Event Synchronization

•

Each server can participate in multiple concurrent sessions. A session can involve two servers on
the same system, or two servers on different PRIMENET nodes. ISC automatically handles the
interface with PRIMENET, making an ISC session across PRIMENET nodes appear identical to
ISC processing within the same node.
ISC supports several different kinds of messages:

• Normal Messages are messages sent during an established session. A Normal
message can consist of two parts; a control part for short messages and a data part for
longer messages. A Normal message consisting of both parts can be up to 32,886
characters in length. Information of any type can be sent in either the control part or
the data part of a message.
Expedited Messages are messages sent during an established session. Expedited
messages are short messages that consist of a control part only. Expedited messages
and Normal messages are placed in separate queues. This enables a server to read all
of its Expedited messages first, then read its Normal messages.
Connect Messages are messages sent while establishing or terminating a session. You
can use these short messages rather than fully establishing a session if only a single
brief message exchange is required.

Include Files
The SYSCOM directory contains a number of include files that a program must include if it
calls subroutines for event synchronizers, timers, or ISC. The include files define key values that
correspond to numeric values returned or expected by the subroutines. A program should
reference the key values defined in these files, rather than their numeric equivalents. The include
files provide templates for data structures used by some subroutines.
Event synchronizers, timers, and ISC each have their own include files. Different versions of
each include file are provided for different programming languages. For example, the include
file for event synchronizers exists in separate versions for FTN, PL/I, Pascal, C, and PMA.
Table 1-1 lists the include files in the SYSCOM directory, and the subroutines that use each file.
In the include file names, replace language with the suffix for the language in which the
program is written.

F i r s t E d i t i o n 1 - 3

Subroutines Reference V: Event Synchronization

Table 1-1
SYSCOM Include Files

Include File

SYNCjCODES.lNS.language
TIMERMlK.INS.language
lSC_KEYS.JNS.language
SRS_CODES.INS.language
ISC_STRUCTURES.TNS.language

Contents
Codes for SYN$ subroutines
Codes for TMR$ subroutines
Codes for IS$ subroutines
Codes for SRS$ subroutines
Structure templates for IS$ subroutines

These SYSCOM include files are described more fully in the chapters on synchronizers, timers,
and ISC.

" \

Retrieving Error Messages
Always use ER$PRINT and ER$TEXT, rather than ERRPR$ or ERTXT$, to retrieve error
messages for timers, event synchronizers, or ISC. ER$PRINT prints a message on a terminal,
and ERSTEXT returns a message to a variable.
ERSPRINT and ER$TEXT retrieve ERRD error messages and subsystem-specific error
messages. To retrieve error messages, ERSPRINT and ERSTEXT first look for a specified
message file in the SYSOVL directory. If the specified message file does not exist in SYSOVL,
ERSPRINT and ERSTEXT retrieve the error message from PRIMOS internal tables, which are
in English.

Programs that call ERSPRINT and ERSTEXT must include the SYSCOM include file
ErrorMsgKdk.INS.language, where language is the suffix for the language of the calling
program.
For more information about ERSPRINT and ERSTEXT, see the Subroutines Reference III:
Operating System.

1-4 First Edition

Part II, Event Synchronizers and Event Groups

Event Synchronizers

Introduction
Event synchronizers make it possible to synchronize user processes with facilities of the
PRIMOS operating system. These facilities include timers and the InterServer Communications
(ISC) subsystem. Timers and ISC use event synchronizers to signal to user processes that certain
events occurred. The user processes can base their subsequent actions on the occurrence or
nonoccurrence of these events. See Part III for information about timers, and Part IV for
information about ISC.
Event synchronizers can be used to synchronize PRIMOS facilities and user processes as
follows:

• When a PRIMOS facility wants to indicate to a user process that an event occurred, it
can post a notice on an event synchronizer.

• If a process needs to know whether a particular event occurred before it takes further
action, the process can retrieve a notice of an event on the event synchronizer, if one
was posted.

• If a process has nothing to do until a particular event occurs, the process can wait
until there is a notice of an event on a particular synchronizer. The process can wait
for the event indefinitely, or it can set a limit to the length of time that it will wait.

An event synchronizer is private to a single server and cannot be accessed by other servers.
Some user processes may need to know whether any one of a group of possible events occurred.
Such a process can access a group of event synchronizers, known as an event group, to
determine whether there is a notice of an event on any of the synchronizers in the group. The
process can wait for notices to be posted on event groups, either indefinitely or for a limited
length of time.

Note
Synchronizers can also be used to synchronize the activities of
processes within the same server. The only multiprocess servers
currently supported are servers running PRIMIX where child
processes are running.

F i r s t E d i t i o n 2 - 1

Subroutines Reference V: Event Synchronization

Processes must call subroutines to create, use, and destroy event synchronizers and event groups.
This chapter describes the subroutines for event synchronizers. Chapter 3 describes subroutines
for event groups.

Event Synchronizer Subroutines
Table 2-1 lists the event synchronizer subroutines. See Table 3-1 for a list of the event group
subroutines. Programs written in FTN must use the six-character subroutine names listed.

Table 2-1
Event Synchronizer Subroutines

Name
SYNSCREA
SYNSCR
SYNSPOST
SYNSPO
SYNSWAIT
SYNSWT
SYNSTMWT
SYNSTW
SYNSRTRV
SYNSRV
SYNSDEST
SYNSDE

Function
Creates a synchronizer

Posts a notice on a synchronizer

Waits on a synchronizer

Performs a timed wait on a synchronizer

Retrieves a notice from a synchronizer

Destroys a synchronizer

The following paragraphs summarize the functions that synchronizer subroutines perform.
^ >

Creating Synchronizers
To create an event synchronizer, a process calls the subroutine SYNSCREA. SYNSCREA
assigns an identifier to the synchronizer. This identifier becomes an input parameter to other
subroutines that access the synchronizer. The process that calls SYNSCREA specifies the
number of notices that are to be on the synchronizer when it is created. This number must be
greater than or equal to 0.

2-2 First Edition

Event Synchronizers

Posting Notices on Synchronizers
When a process in a multiprocess server needs to indicate to other processes within that server
that a particular event occurred, it can call the subroutine SYNSPOST. SYNSPOST posts a
notice on a synchronizer within the same server as the process that calls SYNSPOST. If no
processes are waiting on or performing a timed wait on the synchronizer (see below), posting the
notice increases the synchronizer's notice count by 1. If processes are waiting, posting the notice
causes one process to resume execution. At PRIMOS Rev. 22.0, synchronization within a server
is possible only for PRIMIX child processes.

Waiting on Synchronizers
When a process needs to wait until a particular event occurs before taking further action, it can
call the subroutine SYNSWAIT to wait on a particular event synchronizer. If there are no
notices on the event synchronizer, the process that calls SYNSWAIT suspends its own operation
until another process posts a notice on the synchronizer. If there are notices on the synchronizer,
the process that calls SYNSWAIT continues its operations. When a process attempts to wait on a
synchronizer that has a notice count of 1 or more, it decreases the synchronizer's notice count by
1 and continues to run. Any number of processes within a server can wait on a synchronizer.

Performing a Timed Wait on Synchronizers
A process that needs to wait on a synchronizer may need to set a limit to the amount of time that
it will wait. Such a process can call the subroutine SYNSTMWT to perform a timed wait on the
synchronizer. A process that performs a timed wait on a synchronizer suspends its own operation
until another process posts a notice on the synchronizer or until an interval of time passes. The
process that calls SYNSTMWT specifies the length of this interval. When a process attempts to
perform a timed wait on a synchronizer that has a notice count of 1 or more, it decreases the
notice count by 1 and continues to run. Any number of processes within a server can perform a
timed wait on a synchronizer.

Retrieving a Notice from an Event Synchronizer
A process that wants to find out whether an event occurred, but does not want to wait on a
synchronizer, can call the subroutine SYNSRTRV to retrieve a notice from a synchronizer. If the
synchronizer's notice count is 1 or more, the retrieving process decreases the count by 1. If the
synchronizer has no outstanding notices, SYNSRTRV does nothing to the synchronizer and
indicates to the calling process that there are no notices on the synchronizer.

F i r s t E d i t i o n 2 - 3

Subroutines Reference V: Event Synchronization

Destroying Event Synchronizers
When a synchronizer is no longer needed, a user process can call the subroutine SYNSDEST to
destroy the synchronizer. Before destroying an event synchronizer, be sure to cancel any timers
that are to post notices on it. If an event synchronizer is destroyed while a timer is set to post
notices on it, notices could eventually be posted inappropriately on another event synchronizer.
The INITIALIZE_COMMAxND_ENVIRONMENT (ICE) command with the -SERVER option
deallocates all event synchronizers and timers belonging to a user process. The ICE command
with the -SERVER option also logs out any child processes belonging to the user process. The
ICE command without the -SERVER option does not affect event synchronizers or timers. See
the PRIMOS Commands Reference Guide for information about the ICE command.

Include Files for Synchronizers
The SYSCOM directory contains a number of include files for programs that invoke synchronizer
subroutines. The include files define certain key values that correspond to numeric values returned
by synchronizer subroutines. These key values serve as status codes and other arguments. The
include files also define templates for data structures used by synchronizer subroutines.
There are separate include files for different programming languages. A program that calls
synchronizer subroutines should include the synchronizer include file for its language and use
the key values defined in the file, rather than their numeric equivalents.
The names of the include files for synchronizers are of the form

SYNC_CODESJNS.language
where language is an abbreviation specifying the programming language. For example, the
synchronizer include file for PL/I is

SYNC_CODES.INS.PLl

Before writing a program that invokes synchronizer subroutines, consult the include file for the
program's language to determine the correct key values for that language.

Note
Because of the name length limits of the FTN language, the key values
in the FTN key file are substantially different from those in other
language files. Appendix C lists the FTN keys used as returned codes.

Subroutine Descriptions
This section contains descriptions of the subroutines that create, use, and destroy event
synchronizers. In the subroutine descriptions, the data type declarations (DCL statements), status
codes, and whatjiappened codes are in PL/I format.

2 - 4 F i r s t E d i t i o n

Event Synchronizers

SYNSCREA

SYN$CREA
SYN$CR
Creates an event synchronizer.

Usage

DCL SYNSCREA ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BINQ5));

CALL SYNSCREA {count, sync Jdentif ier, code);

Parameters

count
INPUT. The number of notices that the event synchronizer is to have when it is created. This
number must be greater than or equal to 0.

sync Jdentif ier
OUTPUT. The identifier of the synchronizer that SYNSCREA created. This value can be
NullSyncNum or a value greater than 0. The value of NullSyncNum is defined in the
synchronizer include file.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSCREA was completed without error. Any other code indicates that
SYNSCREA failed to create a synchronizer and assigned the value NullSyncNum to
sync Jdentif ier.

SYN_SC$NoResources
The system is not able to allocate resources for an event synchronizer. The process that
calls SYNSCREA may be able to solve this problem by releasing kernel resources that it
is not currently using, such as synchronizers, groups, or timers, and then reexecuting the
call.

SYN_SC$InvNoticeCount
The value specified for the parameter count is invalid, because it is negative.

SYN_SC$MaxSyncsAlloc
The maximum number of synchronizers or groups allowed for a server has already been
allocated and no more can be created. To solve this problem, destroy an event
synchronizer or an event group on the server.

F i r s t E d i t i o n 2 - 5

Subroutines Reference V: Event Synchronization

SYNSCREA

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSCREA creates a new event synchronizer and returns a value to sync Jdentif ier to represent
it. To access the new synchronizer, a process must reference the value that SYNSCREA returns
to sync Jdentif ier.
The process that calls SYNSCREA specifies the initial notice count of the synchronizer. This
count represents the number of times that a particular event has already occurred at the time
when the synchronizer is created. In most cases, a process should specify an initial notice count
of 0 in its call to SYNSCREA.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

2 - 6 F i r s t E d i t i o n

Event Synchronizers

SYNSPOST

SYN$POST
SYN$PO
Posts a notice on an event synchronizer.

Usage

DCL SYNSPOST ENTRY (FIXED BINQ5), FIXED BEM(15));

CALL SYNSPOST {sync Jdentif ier, code)',

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer on which SYNSPOST is to post a notice.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSPOST was completed without error.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer. Either the specified
synchronizer does not exist or the maximum number of pending notices for that
synchronizer has been exceeded. See Appendix D.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSPOST posts a notice on the event synchronizer specified by sync Jdentif ier. SYNSPOST
can post notices on synchronizers that stand alone or on synchronizers that are in event groups.
See Chapter 3 of this volume for more information about event groups.
If there are no processes waiting on the event synchronizer specified by sync Jdentif ier,
SYNSPOST increases the synchronizer's notice count by 1. If at least one process is waiting on
or performing a timed wait on this synchronizer, SYNSPOST allows a process that is waiting on
the synchronizer to run but does not change the synchronizer's notice count.

F i r s t E d i t i o n 2 - 7

Subroutines Reference V: Event Synchronization

SYNSPOST

Note
Currently, SYNSPOST is of use primarily in servers running under
PRIMIX where child processes are running. SYNSPOST makes it
possible to synchronize the activities of the processes within such a
server.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

~ >

^ >

2 - 8 F i r s t E d i t i o n
^ >

Event Synchronizers

r
r

SYN$WAIT

SYN$WAIT
SYN$WT
Waits on an event synchronizer that is not in an event group.

Usage

DCL SYNSWAIT ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSWAIT {syncJdentif ier, code);

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer on which the process is to wait.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSWAIT was completed without error.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup
The synchronizer specified by sync Jdentif ier is currently part of an event group.
SYNSWAIT did nothing because it cannot wait on a synchronizer that is part of an
event group.

SYN_SC$NoResources
Resources are not available to enable the process to wait on the synchronizer specified
by sync Jdentif ier.

SYN_SC$WaitHasAborted
The wait was ended by a software interrupt. When this happens, the handler of the
software interrupt usually reexecutes the call to the subroutine; in this case, the status
SYN_SC$WaitHasAborted is not reported. In some cases, however, the handler may not
reexecute the subroutine, allowing SYN_SC$WaitHasAborted to be reported.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

F i r s t E d i t i o n 2 - 9

Subroutines Reference V: Event Synchronization

SYNSWAIT

Discussion

SYNSWAIT checks the notice count of a synchronizer and bases its subsequent actions on
whether there are notices on the synchronizer.
If there are notices on the synchronizer when the process calls SYNSWAIT, SYNSWAIT
decreases the synchronizer's notice count by 1 and allows the process that called SYNSWAIT to
continue to run.
If there are no notices on the synchronizer, SYNSWAIT causes the calling process to wait until
a notice is posted on the synchronizer. When a notice is posted on the synchronizer,
SYNSWAIT allows the calling process to run again.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

2-10 First Edition

Event Synchronizers

SYNSTMWTr
SYN$TMWT
SYN$TW
Performs a timed wait on an event synchronizer that is not in an event group.

Usage

DCL SYNSTMWT ENTRY (FIXED BIN(15), FIXED BIN(31), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSTMWT {sync Jdentif ier, waitjime, whatjtappened, code);

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer on which the process that calls SYNSTMWT
is to perform a timed wait.

waitjime
INPUT. The greatest amount of time that the calling process will wait for a notice to be
posted on the event synchronizer. Specify waitjime in milliseconds. Currently, the system
rounds the waitjime value down to the next lower multiple of 100 milliseconds, waitjime
cannot be 0.

whatjtappened
OUTPUT. SYNSTMWT returns this code only when it returns the code SYN_SC$OK.
whatjtappened indicates why SYNSTMWT is enabling the process to run agaia The
possible codes are:

SYN_WHC$Notice
The synchronizer had notices when SYNSTMWT was called, or a notice was posted on
the synchronizer before waitjime elapsed.

SYN_WHC$TimeOut
There were no notices on the synchronizer when SYNSTMWT was called and the
amount of time specified by waitjime passed without a notice being posted on the
event synchronizer.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSTMWT was completed without error.

^ * F i r s t E d i t i o n 2 - 1 1

Subroutines Reference V: Event Synchronization

SYNSTMWT

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$InvTimeInt
The value of waitjime is invalid because it is not greater than 0.

SYN_SC$SyncInGroup
The synchronizer whose number is specified by sync Jdentif ier is in an event group.
SYNSTMWT did nothing because it cannot wait on a synchronizer that is part of an
event group.

SYN_SC$NoResources
Resources are not available to enable the process to perform a timed wait on the
synchronizer specified by sync Jdentif ier.

SYN_SC$WaitHasAborted
The wait was ended by a software interrupt. When this happens, the handler of the
software interrupt usually reexecutes the call to the subroutine; in this case, the status
SYN_SC$WaitHasAborted is not reported. In some cases, however, the handler may not
reexecute the call to the subroutine, allowing SYN_SC$WaitHasAborted to be reported.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSTMWT checks the notice count of a synchronizer and bases its subsequent actions on
whether there are notices on the synchronizer.
If there is at least one notice on the synchronizer when a process calls SYNSTMWT,
SYNSTMWT decreases the synchronizer's notice count by 1, returns SYN_WHC$Notice to
whatjtappened, and allows the process to continue to run.
If there are no notices on a synchronizer when a process calls SYNSTMWT, SYNSTMWT
causes the process that calls it to wait until a notice is posted on the synchronizer, or until a
specified amount of time passes. The process that calls SYNSTMWT specifies this amount of
time. When a notice is posted on the synchronizer or the interval of time elapses, SYNSTMWT
enables the process that called it to run again.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

2 - 1 2 F i r s t E d i t i o n

Event Synchronizers

r
SYNSRTRV

SYN$RTRV
SYN$RV
Retrieves a notice from an event synchronizer that is not in an event group.

Usage

DCL SYNSRTRV ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL SYNSRTRV {syncJdentif ier, whatjtappened, code);

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer from which SYNSRTRV is to retrieve a
notice.

whatjtappened
OUTPUT. A code that tells the caller of SYNSRTRV whether or not SYNSRTRV retrieved a
notice from the synchronizer. The possible codes are:

SYN_WHC$Notice
SYNSRTRV retrieved a notice from the synchronizer.

SYN_WHC$NoNotice
There were no notices on the synchronizer for SYNSRTRV to retrieve.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSRTRV was completed without error.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup
SYNSRTRV cannot retrieve a notice from the synchronizer specified by sync Jdentif ier
because the synchronizer is a part of an event group.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

F i r s t E d i t i o n 2 - 1 3

Subroutines Reference V: Event Synchronization

SYN$RTRV
" >

^

Discussion

A process should call SYNSRTRV when it wants to note whether an event occurred before
taking some action, but does not want to wait. SYNSRTRV never causes the process that calls it
to wait.
If there is a notice on the synchronizer, SYNSRTRV decreases the synchronizer's notice count
by 1. If there is no notice on the synchronizer, SYNSRTRV does nothing to the synchronizer.
SYNSRTRV returns to whatjtappened a code indicating whether or not it retrieved a notice.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

^ >

^ >

2 - 1 4 F i r s t E d i t i o n

Event Synchronizers

SYNSDEST

SYN$DEST
SYN$DE
Destroys an event synchronizer.

Usage

DCL SYNSDEST ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSDEST {sync Jdentif ier, code);

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer that SYNSDEST is to destroy.

code
OUTPUT The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSDEST was completed without error.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup
The synchronizer specified by sync Jdentif ier cannot be destroyed because it is in an
event group. Before the process can destroy the synchronizer, it must call the subroutine
SYNSREMV to remove the synchronizer from the event group. See Chapter 3 of this
volume for information about event groups.

SYN_SC$SyncHasWaiter
The synchronizer specified by sync Jdentif ier cannot be destroyed because one or more
processes are waiting on it.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

F i r s t E d i t i o n 2 - 1 5

Subroutines Reference V: Event Synchronization

SYNSDEST

Discussion

SYNSDEST destroys an event synchronizer, but does not destroy references to this synchronizer
in the database of the process that calls SYNSDEST. The process that calls SYNSDEST should
destroy these references. SYNSCREA can reassign the identifier of a destroyed synchronizer to
a new synchronizer.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

2 _ - | 6 F i r s t E d i t i o n

Event Groups

Introduction
An event group is a group of event synchronizers. The event group enables a user process to
determine whether any one of a group of events has taken place. PRIMOS facilities, such as
timers and ISC, can post notices on any of the synchronizers in an event group, as well as on
synchronizers that are not in a group. Each synchronizer in the event group can represent a
different event User processes can use event groups in the following ways:

• If a user process needs to know whether any one of a group of events occurred
before it takes further action, the process can access the event group to determine
whether the notice of an event has been posted on any of the synchronizers in the
group.

• If a user process has nothing to do until one of the events in the group occurs, the
process can wait until a notice is posted on one of the synchronizers in the event
group. The process can wait indefinitely, or it can set a limit to the amount of time
that it will wait.

This chapter describes the system subroutines that user processes can call to create, use, and
destroy event groups.

Event Group Subroutines
Table 3-1 lists the subroutines that create, use, and destroy event groups. Programs written in
FTN must use the six-character subroutine names listed.

r
F i r s t E d i t i o n 3 - 1

Subroutines Reference V: Event Synchronization

Table 3-1
Subroutines Dealing with Event Groups

N a m e F u n c t i o n
SYNSGCRE Creates an event group
SYNSGC
SYNSMVTO Moves a synchronizer into an event group
SYNSMV
SYN$REMV Removes a synchronizer from an event group
SYNSRM
SYNSGWT Causes a process to wait on an event group
S Y N S G W ^ |
SYNSGTWT Causes a process to perform a timed wait on
SYNSGT an event group
SYNSGRTR Retrieves a notice from an event group
SYNSGR
SYNSGDST Destroys an event group
SYNSGD

The following sections summarize the functions that event group subroutines perform.

Creating Event Groups
To create an event group, a user process calls the subroutine SYNSGCRE. SYNSGCRE assigns
an identifier to the group. This identifier becomes an input parameter to other subroutines that
access the group. SYNSGCRE creates the group empty, with no synchronizers in it. Before a
process can use an event group that it created, the process must move event synchronizers into
the event group (see SYNSMVTO below).
SYNSGCRE also specifies the number of priority levels that the group can use. The priority
levels of an event group determine the order in which the group returns notices of events to
processes.
Except when a process specifies a particular priority level (see SYNSGRTR below), a notice is
returned from a synchronizer at the highest priority level where there are synchronizers with
notices. Notices are returned from lower priorities only when there are no notices at higher
priorities.
The process that creates the event group specifies the number of different priority levels that the
group can have. The priority levels are numbered, with 1 representing the highest priority.
An event group is private to a single server and cannot be accessed by other servers.

3 - 2 F i r s t E d i t i o n

Event Groups

Moving Synchronizers Into Event Groups
To be more useful than an individual synchronizer, an event group must have at least two event
synchronizers in it. To move an event synchronizer into an event group, a process calls the
subroutine SYNSMVTO. If a synchronizer is already part of a group, SYNSMVTO removes the
synchronizer from this current group before moving it into a different group.
In its call to SYNSMVTO, a process specifies a For Client Use field for the synchronizer. The
For Client Use field is returned to a process when the process receives a notice of an event from
the synchronizer. The For Client Use field can enable the process to identify the particular event
associated with the synchronizer. For example, the For Client Use field might contain characters
that identify the event for which a notice was posted, or a pointer to a record that contains
information about the event.
In its call to SYNSMVTO, a process also specifies the priority level into which SYNSMVTO is
to move the synchronizer. A user process should move synchronizers into different priority
levels based on the order in which it wants to respond to different events.

Removing an Event Synchronizer from an Event Group
When an event synchronizer is no longer needed in an event group, a process can call the
subroutine SYNSREMV to remove it from the group. When the process removes the
synchronizer, any notices on that synchronizer remain with it. After a synchronizer has been
removed from a group, it can be accessed individually.

Waiting on Event Groups
When a process needs to wait until a notice of an event is posted on one of the synchronizers in
a group, it can call the subroutine SYNSGWT to wait on the group.
If there is a notice on any of the synchronizers within the group when the process calls
SYNSGWT, SYNSGWT decreases by 1 the notice count of a synchronizer at the highest priority
level where there are synchronizers with notices, returns to the waiting process the identifier and
For Client Use field of this synchronizer, and allows this process to continue to run.
If there are no notices on any of the synchronizers in the group, the process that calls
SYNSGWT suspends its own operations until another process posts a notice on one of the
synchronizers in the group. When a process posts a notice on a synchronizer within the group,
SYNSGWT returns the identifier and the For Client Use field of this synchronizer to the process
that called SYNSGWT, and allows this process to run again.

F i r s t E d i t i o n 3 . 3

Subroutines Reference V: Event Synchronization

3-4

Performing a Timed Wait on an Event Group
A process can set a limit to the amount of time that it will wait for a notice to be posted on an
event group by calling the subroutine SYNSGTWT to perform a timed wait on the group. The
calling process specifies the maximum amount of time that it will wait.
If there is a notice on any of the synchronizers in the group when the process calls
SYNSGTWT, SYNSGTWT decreases by 1 the notice count of a synchronizer at the highest
priority level where there are synchronizers with notices, returns the identifier and the For Client
Use field of this synchronizer to the process that called SYNSGTWT, tells the calling process
that there was a notice on the group, and allows the calling process to continue to run.
If there are no notices on any of the synchronizers in the group when a process calls SYNSGTWT,
the process waits until a notice is posted on a synchronizer within the event group, or until an
interval of time passes. The process that calls SYNSGTWT specifies this interval of time. If a notice
is posted on one of the synchronizers in the group before the interval of time elapses, SYNSGTWT
returns the identifier and For Client Use field of this synchronizer to the calling process, allows the
calling process to run again, and indicates to the process that a notice was posted. If the interval of
time passes without a notice being posted on a synchronizer in the group, SYNSGTWT allows the
calling process to run again and indicates to the process that the interval of time elapsed.

Retrieving Notices from Event Groups
A process that wants to find out whether there is a notice on any of the synchronizers in the
group but does not under any circumstances want to wait can call the subroutine SYNSGRTR.
SYNSGRTR indicates to the calling process whether there are notices on the group, and returns
a notice to the process if one has been posted. SYNSGRTR never causes the process that calls it
to wait.
SYNSGRTR can retrieve notices from the entire group, or only from synchronizers at a certain
priority level. The latter capability is useful when a process wants to retrieve a notice of events
at a certain priority level.

Destroying Event Groups
When an event group is no longer needed, a user process can call the subroutine SYNSGDST to
destroy the group. When a process destroys a group, the synchronizers within the group remain
as individual synchronizers. The individual synchronizers retain the notices that they had when
the event group was destroyed.

Subroutine Descriptions
This section contains descriptions of the subroutines that create, use, and destroy event groups.
In the subroutine descriptions, the data type declarations and the possible values for the
parameters code and whatjtappened are in PL/I format.

First Edition

Event Groups

SYNSGCRE

SYN$GCRE
SYN$GC
Creates an event group.

Usage

DCL SYNSGCRE ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL SYNSGCRE {priorityJevels, group Jdentif ier, code);

Parameters

priority Jevels
INPUT. The number of different priority levels within this event group. This number can
range from 1 to MaxPriorities, with 1 representing the highest priority. The value of
MaxPrioriti.es is defined in the include file for synchronizers.

group Jdentif ier
OUTPUT. The identifier of the event group that SYNSGCRE created. If the status code is not
SYN_SC$OK, SYNSGCRE returns NullSyncNum to group Jdentif ier. The value of
NullSyncNum is defined in the include file for synchronizers.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGCRE was completed without error. Any code other than
SYN_SC$OK indicates that SYNSGCRE failed to create an event group and assigned
the value NullSyncNum to group Jdentif ier.

SYN_SC$NoResources
The system is not able to allocate resources for a new event group. The calling process
may be able to solve this problem by releasing resources that it is not currently using,
such as other synchronizers or timers.

SYN_SC$InvPriority
The value specified by priority Jevels is not within the valid range for priorities, which
is from 1 to MaxPriorities.

SYN_SC$MaxSyncsAlloc
The maximum number of synchronizers or groups allowed for this server has already
been created on this server. To enable the calling process to create an event group,
destroy an event synchronizer or an event group on the server.

F i r s t E d i t i o n 3 - 5

Subroutines Reference V: Event Synchronization

SYNSGCRE

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGCRE creates an event group and returns the group's identifier to the argument
group Jdentif ier. The identifier is used as an input parameter to other subroutines that access the
event group. The process that calls SYNSGCRE specifies in priority Jevels the number of
different priority levels that the group is to have.
SYNSGCRE creates an event group with no synchronizers in it. Processes must call
SYNSMVTO to move synchronizers into event groups.

Note
The use of priority levels can lower the speed at which groups return
notices through SYNSGRTR, SYNSGWT, and SYNSGTWT. The
lower the priority level of a synchronizer, the more processing time is
required to return a notice from that synchronizer.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

3 - g F i r s t E d i t i o n

Event Groups

SYNSMVTO

SYN$MVTO
SYN$MV
Moves an event synchronizer into an event group.

Usage

DCL SYNSMVTO ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
(3) FIXED BIN(15), FIXED BIN(15));

CALL SYNSMVTO {group Jdentif ier, sync Jdentif ier, priorityJevel,
for_clientjise, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group into which the event synchronizer specified by
sync Jdentif ier is to be moved.

sync Jdentif ier
INPUT. The identifier of the event synchronizer to be moved into the event group specified
by group Jdentif ier.

priority Jevel
INPUT. The priority level at which SYNSMVTO is to move the event synchronizer into the
event group. This value can range from 1, the highest priority level, to the value specified for
priority Jevels in the call to SYNSGCRE that created the event group.

for_clientjuse
INPUT. A value that is returned to a process when a notice is returned to it from synchronizer
sync Jdentif ier. The calling process specifies the forjclientjise value. PRIMOS does not use
or alter the for_client_use value in any way. See the descriptions of the subroutines
SYNSGWT, SYNSGTWT, and SYNSGRTR for information about when subroutines return
the For Client Use field to a process.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSMVTO was completed without error.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

F i r s t E d i t i o n 3 - 7

Subroutines Reference V: Event Synchronization

SYNSMVTO

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$SyncHasWaiter
The event synchronizer specified by sync Jdentif ier cannot be moved into an event
group because a process is currently waiting on the synchronizer.

SYN_SC$InvPriority
The value of priority Jevel is outside the range of legal priority levels for the event
group specified by group Jdentif ier. The range of legal priority levels for the event
group is set by the process that calls SYNSGCRE to create the group.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSMVTO moves an event synchronizer into an existing event group. If the synchronizer has
notices, it retains them when SYNSMVTO moves it into the event group. Thus, executing
SYNSMVTO could enable one or more processes that are waiting or performing a timed wait on
the event group to run again. If the synchronizer is already in an event group when
SYNSMVTO is executed, SYNSMVTO removes the synchronizer from its original group, even
if processes are waiting on this group. A synchronizer cannot be in more than one event group at
a time.
The process that calls SYNSMVTO specifies the priority level into which SYNSMVTO moves
the synchronizer. More than one event synchronizer can be at the same priority level. The calling
process should move synchronizers into priority levels based on the order in which it would like
to process events, given that they occur at the same time.
The For Client Use field provides a way to associate a name or other information with each
synchronizer in a group. For example, the For Client Use field can serve as a pointer to a
structure that contains information about a particular event. Because a process can receive
information about an event from the For Client Use field, it does not have to maintain a table to
associate synchronizer identifiers with particular events.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

3-8 First Edition

Event Groups

SYNSREMVr
SYN$REMV
SYN$RM
Removes an event synchronizer from an event group.

Usage

DCL SYNSREMV ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSREMV {sync Jdentif ier, code);

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer that SYNSREMV is to remove from an
event group.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSREMV was completed without error.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$SyncNotInGroup
The synchronizer specified by sync Jdentif ier is not in an event group. The calling
process can ignore this error if all that matters is that the synchronizer not be in an event
group.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSREMV removes an event synchronizer from an event group, making it possible for
processes to access the synchronizer individually. When SYNSREMV removes the synchronizer,
any notices on that synchronizer are also removed from the group and remain with the
synchronizer.

F i r s t E d i t i o n 3 . 9

Subroutines Reference V: Event Synchronization

SYNSREMV

Note
In a multiprocess server, removing the last synchronizer from a group
could leave one or more processes waiting on a now empty group.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

^ >

3 - 1 0 F i r s t E d i t i o n

Event Groups

SYNSGWT

SYN$GWT
SYN$GW
Waits on an event group.

Usage

DCL SYNSGWT ENTRY (FIXED BIN(15), FIXED BIN(15), (3) FIXED BIN(15),
FIXED BIN(15));

CALL SYNSGWT {group Jdentif ier, sync Jdentif ier, forjclientjise, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group on which the process that calls SYNSGWT is to
wait.

sync Jdentif ier
OUTPUT. The identifier of the event synchronizer from which SYNSGWT is returning a
notice. This is a synchronizer at the highest priority level where any synchronizers have
notices.

for jclientjise
OUTPUT. The For Client Use field associated with the synchronizer whose number
SYNSGWT returns to sync Jdentif ier. The value of for_client_use is specified by the process
that called SYNSMVTO to move the synchronizer into the group.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGWT was completed without error.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

SYN_SC$WaitHasAborted
The calling process was waiting on the event group, but a software interrupt aborted its
wait. When this happens, the handler of the software interrupt usually reexecutes the call
to the subroutine; in this case, the status SYN_SC$WaitHasAborted is not seen by the
calling program. In some cases, however, the handler may not reexecute the subroutine,
allowing SYN_SC$WaitHasAborted to be seen. When this error occurs, SYNSGWT
returns NullSyncNum to sync Jdentif ier and NullFCU to for_clientjj.se.

F i r s t E d i t i o n 3 - 1 1

Subroutines Reference V: Event Synchronization

SYNSGWT

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGWT checks whether there are notices on any synchronizers within an event group.
If there are notices, SYNSGWT decreases by 1 the notice count of a synchronizer at the highest
priority level where at least one synchronizer has a notice, and allows the calling process to
continue to run. SYNSGWT also returns to the calling process the identifier of the synchronizer
whose notice it is returning and the For Client Use field associated with this synchronizer.
If there are no notices on the group, SYNSGWT causes the calling process to wait until a notice
is posted on a synchronizer in the group. When a notice is posted, SYNSGWT allows the
process to resume execution. Note that SYNSGWT causes the calling process to wait on an
entire group. SYNSGWT cannot cause a process to wait for a notice to be posted on an
individual synchronizer or priority level.
If the status code is not SYN_SC$OK, SYNSGWT returns NullSyncNum to sync Jdentif ier and
NullFCU to for_client_use.
A process would call SYNSGWT when it has nothing to do and wants to wait for a notice to be
posted on one of the synchronizers within a group.

Note
A server should never attempt to wait on an event group with no
synchronizers in it, unless there is more than one process in tlie
server. If a process waits on an event group with no synchronizers, it
will wait until another process moves synchronizers into the group
and posts notices on them.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

3-12 First Edition

Event Groups

SYNSGTWT

r
SYN$GTWT
SYN$GT
Performs a timed wait on an event group.

Usage

DCL SYNSGTWT ENTRY (FIXED BIN(15), FIXED BIN(31), FIXED BIN(15),
FIXED BIN(15), (3) FIXED BIN(15), FIXED BIN(15));

CALL SYNSGTWT (group Jdentif ier, waitjime, whatjtappened,
sync Jdentif ier, forjlientjuse, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group on which SYNSGTWT is to perform a timed wait.

waitjime
INPUT. The longest amount of time that the calling process is to wait for a notice to be
posted on one of the synchronizers in the event group. Specify waitjime in milliseconds.
Currently, the system rounds the waitjime value down to the next lower multiple,, of 100
milliseconds.

whatjtappened
OUTPUT. SYNSGTWT returns this code only when it returns the code SYN_SC$OK. It tells
the calling process whether a notice was returned or waitjime elapsed. The possible codes
are:

SYN_WHC$Notice
The group had notices when SYNSGTWT was called, or a notice was posted on the
group before waitjime elapsed.

SYN_WHC$TimeOut
There were no notices on the group when SYNSGTWT was called and the amount of
time specified by waitjime elapsed without a notice being posted on the group.

sync Jdentif ier
OUTPUT. The identifier of the event synchronizer from which a notice is being returned.

for jclientjise
OUTPUT. The For Client Use field associated with the event synchronizer whose number is

r returned to sync Jdentif ier. The value of forjlientjuse is specified by the process that calledSYNSMVTO to move the synchronizer into the group.

r F i r s t E d i t i o n 3 - 1 3

Subroutines Reference V: Event Synchronization

SYNSGTWT

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGTWT was completed without error.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

SYN_SC$InvTimeInt
The value of waitjime is not valid, waitjime must not be 0. Any other value is treated
as positive.

SYN_SC$WaitHasAborted
The wait was ended by a software interrupt. When this happens, the handler of the software
interrupt usually causes the call to the subroutine to be reexecuted; in this case, the status
SYN_SC$WaitHasAborted is not seen by the calling program. In some cases, however, the
handler may not reexecute the subroutine, allowing SYN_SC$WaitHasAborted to be seen.
When this error occurs, SYNSGTWT returns NullSyncNum for sync Jdentif ier and
NullFCU loforjlientjuse.

SYN_SC$IntemalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGTWT checks whether there are notices on any synchronizer within the event group.
If there are notices when the process calls SYNSGTWT, SYNSGTWT decreases by 1 the notice
count of a synchronizer at the highest priority level where at least one synchronizer has notices
and allows the calling process to continue to run. SYNSGTWT returns to the calling process the
identifier of the synchronizer whose notice count it decreased. SYNSGTWT also returns the For
Client Use field associated with this synchronizer.
If there are no notices, SYNSGTWT causes the calling process to wait until a notice is posted on one
of the synchronizers within the event group, or until the amount of time specified by waitjime
passes. When a notice is posted or the time interval elapses, SYNSGTWT allows the process to
resume execution. Note that SYNSGTWT can only cause the calling process to wait on the entire
group. SYNSGTWT cannot cause a process to wait for a notice to be posted on a particular
synchronizer in a group or at a particular priority level.
A process would call this routine when it has nothing to do and wants to wait for a notice to be
posted on one of the synchronizers in the group, but also wants to do something else if no
notices are posted within a certain amount of time.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

3 - 1 4 F i r s t E d i t i o n

" >

Event Groups

SYNSGRTR

r

r

SYN$GRTR
SYN$GR
Retrieves a notice from an event group.

Usage

DCL SYNSGRTR ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), (3) FIXED BIN(15), FIXED BIN(15));

CALL SYNSGRTR {groupJdentif ier, priority Jevel, whatjtappened,
syncjuientifier, forjlientjuse, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group from which SYNSGRTR is to retrieve a notice.

priority Jevel
INPUT. The priority level at which SYNSGRTR is to retrieve notices, priority Jevel must be
either AllPriorities or within the range of valid priority levels for this event group. Specify
AllPriorities to retrieve a notice from a synchronizer at the highest priority level where there
are synchronizers with notices. Specify a particular priority level to retrieve a notice only
from a synchronizer at that level.

whatjtappened
OUTPUT. Indicates whether SYNSGRTR retrieved a notice. SYNSGRTR returns a value to
whatjtappened when it returns SYN_SC$OK to code. The possible values are:

SYN_WHC$Notice
SYNSGRTR retrieved a notice.

SYN_WHC$NoNotice
SYNSGRTR did not retrieve a notice.

sync Jdentif ier
OUTPUT. The identifier of the event synchronizer from which SYNSGRTR retrieved a
notice.

forjlientjise
OUTPUT. The For Client Use field associated with the event synchronizer from which
SYNSGRTR retrieved a notice. See the description of SYNSMVTO for information about
how to specify a For Client Use field.

F i r s t E d i t i o n 3 - 1 5

Subroutines Reference V: Event Synchronization

SYNSGRTR

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGRTR was completed without error.
If the status code is not SYN_SC$OK, SYNSGRTR returns NullSyncNum to
sync Jdentif ier and NullFCU to forjlientjuse.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

SYN_SC$InvPriority
The value of priority Jevel is not AllPriorities and is not within the range of priority
levels that are valid for event group group Jdentif ier. SYNSGCRE specifies the range
of valid priority levels for a group when it creates the group.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGRTR retrieves a notice from an event group or from a specific priority level of an event
group, if such a notice is available. SYNSGRTR never causes the process that calls it to wait.
When SYNSGRTR retrieves a notice, it always does the following:

• Returns the identifier of the synchronizer with the notice to sync Jdentif ier
• Returns the For Client Use field associated with this synchronizer to forjlientjuse
• Returns SYN_WHC$Notice to whatjtappened

If priority Jevel is set to AllPriorities, and if there are notices on any synchronizer in the group,
SYNSGRTR decreases by 1 the notice count of a synchronizer with a notice at the highest
priority level where at least one synchronizer has a notice.
If priority Jevel specifies a particular priority level, and if there are notices on any of the
synchronizers at that priority level, SYNSGRTR decreases by 1 the notice count of a
synchronizer with a notice at priority Jevel.
If SYNSGRTR does not find a notice on the event group or at the specified priority level,
SYNSGRTR returns SYN_WHC$NoNotice to whatjtappened, NullSyncNum to sync Jdentif ier,
and NullFCU to forjlientjuse.
A process should call SYNSGRTR when it wants to retrieve a notice from any of a set of event
synchronizers but has other work to do and under no circumstances wants to wait. For example,
the calling process might be performing a relatively low priority task that requires lengthy

3 - 1 6 F i r s t E d i t i o n

Event Groups

SYNSGRTR

processing. Before the process finishes the low priority task, it might want to retrieve any higher
priority event notices that may have been posted since it began to process the low priority task.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

r
_ ~ F i r s t E d i t i o n 3 - 1 7

Subroutines Reference V: Event Synchronization

SYNSGDST

SYN$GDST
SYN$GD
Destroys an event group.

Usage
DCL SYNSGDST ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSGDST (group Jdentif ier, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group that SYNSGDST is to destroy.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGDST was completed without error.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

SYN_SC$SyncHasWaiter
SYNSGDST could not destroy the event group because at least one process was waiting
on the group.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGDST destroys an event group. A process should destroy an event group when it no
longer needs the group. SYNSGCRE can assign the identifier of a destroyed event group to a
new group. For this reason, when the calling process destroys an event group, it should remove
all references to the group identifier from its databases.
SYNSGDST does not destroy the synchronizers within an event group. Synchronizers that were
in a destroyed group retain the notice counts that they had at the time when the group was
destroyed.

3 . 1 8 F i r s t E d i t i o n

Event Groups

SYNSGDST

Note
When SYNSGDST is called to destroy a group that contains many
synchronizers, it could block other synchronizer operations of the
calling server. To avoid delaying these operations, remove each
synchronizer from a group before calling SYNSGDST to destroy the
group.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

r
F i r s t E d i t i o n 3 - 1 9

Retrieving Information About
Event Synchronization

Introduction
A user process can call subroutines to get information about particular event synchronizers and
event groups. Table 4-1 lists these subroutines and the types of information that they return.
Programs written in FTN must use the six-character subroutine names listed.

Table 4-1
Subroutines Returning Information About

Synchronizers, Groups, and Timers

Name Information Returned
SYNSCHCK Number of notices; number of waiting pro-
SYNSCK cesses
SYNSGCHK Number of notices on a group at one or all
SYNSGK priority levels; if all levels, also returns num

ber of waiting processes
SYNSINFO Whether synchronizer is in group, and if it is,
SYNSIF the group number, the priority level, and the

For Client Use field
SYNSLSIG List of the synchronizers in group and total
S Y N S L G n u m b e r
SYNSLIST List of the synchronizers in server and total
S Y N S L S n u m b e r
SYNSGLST List of the groups in server and total number
SYNSGL

Subroutine Descriptions
This section contains descriptions of the subroutines that return information about event
synchronizers and event groups. In the subroutine descriptions, the data type declarations and the
possible values for the parameter code are in PL/I format.

First Edition 4-1

Subroutines Reference V: Event Synchronization

SYN$CHCK

SYN$CHCK
SYN$CK
Returns the total number of notices or the number of waiting processes on an event
synchronizer.

Usage

DCL SYNSCHCK ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSCHCK {sync Jdentif ier, notices, waiters, code);

Parameters

sync Jdentifkr
INPUT. The identifier of the event synchronizer about which SYNSCHCK is to return
information.

notices
OUTPUT. The current notice count of the synchronizer whose number is specified by
sync Jdentif ier. The notice count will be greater than or equal to 0.

waiters
OUTPUT. The number of processes currently waiting on the synchronizer whose number is
specified by sync Jdentif ier. The number of waiters will be greater than or equal to 0.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSCHCK was completed without error.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup
The synchronizer specified by sync Jdentif ier is in an event group. SYNSCHCK cannot
check on the status of synchronizers in event groups.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

4 - 2 F i r s t E d i t i o n

Retrieving Information About Event Synchronization

SYNSCHCK

Discussion

SYNSCHCK returns the synchronizer's current notice count to notices and the number of
processes currently waiting on the synchronizer to waiters. Because a synchronizer cannot have
both notices and waiters, only one of these two values can be greater than zero.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 4 . 3

Subroutines Reference V: Event Synchronization

SYN$GCHK

SYN$GCHK
SYN$GK
Returns the count of notices or waiters on an event group.

Usage

DCL SYNSGCHK ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL SYNSGCHK {group Jdentif ier, priority Jevel, notices, waiters, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group about which the calling process wants to obtain
information.

priority Jevel
INPUT. Specify the priority level for which SYNSGCHK is to return the count of notices. To
get the count of notices or waiters on the entire group, specify AllPriorities. The synchronizer
include files define the value of AllPriorities.

notices
OUTPUT. The count of notices on the synchronizers in this group at the priority level
specified by priority Jevel. If priority Jevel is AllPriorities, SYNSGCHK sets notices to the
total of notices on all synchronizers in the event group.

waiters
OUTPUT. The number of processes waiting on this event group, waiters is always set to 0 if
priority Jevel is not AllPriorities.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGCHK was completed without error.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

4 _ 4 F i r s t E d i t i o n

Retrieving Information About Event Synchronization
SYNSGCHK

SYN_SC$InvPriority
The value specified by priority Jevel is not AllPriorities or within the range of priority
levels that are valid for this event group. The value of AllPriorities is defined by the
synchronizer include file.

SYN_SC$InternalEiTor
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGCHK returns information about the current state of a particular event group.
If priority Jevel is set to AllPriorities, SYNSGCHK returns the total number of notices on the
group to notices, and the number of processes currently waiting on the group to waiters. If
priority Jevel is not set to AllPriorities, SYNSGCHK returns to notices the number of notices on
all synchronizers at the priority level specified by priority Jevel. In this case, SYNSGCHK
returns 0 to waiters, because a process can wait only on an entire event group, and not on the
synchronizers within a group at a particular priority level.
Because a group cannot have notices and waiters at the same time, only one of the values
waiters or notices can be nonzero.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 4 - 5

Subroutines Reference V: Event Synchronization

SYN$INFO

SYN$INFO
SYN$IF
Returns information about an event synchronizer's membership in an event group.

Usage
DCL SYNSINFO ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), FIXED BIN(15));

CALL SYNSINFO (syncJdentif ier, information, code);

Parameters

sync Jdentif ier
INPUT. The identifier of the event synchronizer about which SYNSINFO is to return
information.

information
INPUT -> OUTPUT. A pointer to a record to which SYNSINFO returns information about
the current state of the event synchronizer specified by sync Jdentif ier. See Discussion below
for information about the structure of this record.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSINFO was completed without error. If the status is not SYN_SC$OK,
any information returned is meaningless.

SYN_SC$InvSyncNum
sync Jdentif ier does not specify a valid event synchronizer.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSINFO indicates whether a particular event synchronizer is in a group; if it is, SYNSINFO
also returns the group identifier, priority level, and For Client Use field.

^ >

4 - 6 F i r s t E d i t i o n

Retrieving Information About Event Synchronization
SYNSINFO

SYNSINFO returns information to the record named by the pointer information. This record has
the following structure:

del 1 SyncInfoRec based,
2 InGroup bit(l) aligned,
2 GroupNum fixed bin(15),
2 Priority fixed bin(15),
2 ForClient (3) fixed bin (15);

The elements of this record contain the following information:

InGroup
Set to TRUE if the synchronizer is in a group, or to FALSE (= 0) if it is not. SYNSINFO
sets the field to TRUE by setting its most significant bit to 1. If the synchronizer is not in a
group, the other elements in the record do not contain meaningful information.

GroupNum
A 16-bit integer specifying the event group to which the synchronizer belongs.

Priority
A 16-bit integer specifying the priority level of the synchronizer within the group.

ForClient
Three 16-bit integers containing the contents of the synchronizer's For Client Use field.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 4 - 7

Subroutines Reference V: Event Synchronization

SYN$LSIG

SYN$LSIG
SYN$LG
Lists the total number of synchronizers within this group and the identifier of each
synchronizer.

Usage

DCL SYNSLSIG ENTRY (FIXED BIN(15), FIXED BIN(15), (*) FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL SYN$LSIG (groupJdentif ier, size, list, count, code);

Parameters

group Jdentif ier
INPUT. The identifier of the event group whose event synchronizers SYNSLSIG is to list.

size
INPUT. The size of the array list to which SYNSLSIG is to return the numbers of the event
synchronizers in the event group.

list
INPUT -> OUTPUT. An array to which SYNSLSIG returns the identifiers of the event
synchronizers in the event group. The program that calls SYNSLSIG must allocate memory
for this array.

count
OUTPUT. The total count of event synchronizers in the event group.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSLSIG was completed without error.

SYN_SC$InvGroupNum
group Jdentif ier does not specify a valid event group.

SYN_SC$ListTooSmall
The array list is not large enough to hold the identifiers of all the synchronizers in this
event group, and does not contain valid information. However, the information returned
to count is valid. To correct this error, the caller should allocate memory for a larger
array based on the value of count.

4 - 8 F i r s t E d i t i o n

" >

Retrieving Information About Event Synchronization
SYNSLSIG

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSLSIG returns the total count of event synchronizers in the event group to count and the
identifiers of these synchronizers to the elements list[l] through listf count J. Use SYNSINFO to
get information about a particular synchronizer.

Note
The execution time of SYNSLSIG is proportional to the number of
synchronizers in the event group. When the number of synchronizers
in the group is large, SYNSLSIG should be used with caution,
because other synchronizer functions will be delayed while
SYNSLSIG is executing.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 4 9

Subroutines Reference V: Event Synchronization

SYNSLIST

SYN$LIST
SYN$LS
Lists the total count of synchronizers within this server and the identifier of each
synchronizer.

Usage

DCL SYNSLIST ENTRY (FIXED BIN(15), (*) FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSLIST (size, list, count, code);

Parameters

size
INPUT. The size of array list, to which SYNSLIST is to return the identifiers of the event
synchronizers in this server.

list
INPUT -> OUTPUT. An array to which SYNSLIST returns the identifiers of the
synchronizers within the server. The program that calls SYNSLIST must allocate memory for
this array.

count
OUTPUT. The total count of event synchronizers within this server.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSLIST was completed without error.

SYN_SC$ListTooSmall
The array list is not large enough to hold the numbers of all the synchronizers within
this server, and does not contain valid information. However, the information returned to
count is valid. To correct this error, the caller should allocate memory for a larger array
based on the value of count.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

4 - 1 0 F i r s t E d i t i o n

Retrieving Information About Event Synchronization
SYNSLIST

Discussion

SYNSLIST returns the total count of event synchronizers within this server to count and the
identifiers of these synchronizers to the elements list[I] through list [count].

Caution
The execution time of SYNSLIST is proportional to the number of
synchronizers and event groups belonging to the server. When the
number of synchronizers and groups belonging to the server is large,
SYNSLIST should be used with caution, because other synchronizer
functions will be delayed while SYNSLIST is executing.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 4 - 1 1

Subroutines Reference V: Event Synchronization

SYN$GLST

SYN$GLST
SYN$GL
Lists the total count of groups within this server and the identifier of each group.

Usage

DCL SYNSGLST ENTRY (FIXED BL\(15), (*) FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSGLST (size, list, count, code);

Parameters

size
INPUT. The size of the array list to which SYNSGLST is to return the identifiers of the event
groups within this server.

list
INPUT -> OUTPUT. An array to which SYNSGLST returns the identifiers of the event
groups within the server. The program that calls SYNSGLST must allocate memory for this
array.

count
OUTPUT. The total count of event groups within this server.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGLST was completed without error.

SYN_SC$ListTooSmall
The array list is not large enough to hold the identifiers of all the event groups within
this server, and does not contain valid information. However, the information returned to
count is valid. To correct this error, the caller should allocate memory for a larger array
based on the value of count.

SYN_SC$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

4 _ 1 2 F i r s t E d i t i o n

Retrieving Information About Event Synchronization
SYNSGLST

Discussion

SYNSGLST returns the total count of event groups within this server to count and a list of the
group identifiers to array elements listf I] through listf count].

Caution
The execution time of SYNSGLST is proportional to the number of
synchronizers and event groups belonging to the server. When the
number of synchronizers and groups belonging to the server is large,
SYNSGLST should be used with caution, because other synchronizer
functions will be delayed while SYNSGLST is executing.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

r

F i r s t E d i t i o n 4 . 1 3

« , P a r t 1 1 1 , T i m e r s

r

r

r

Timers

Introduction
A user process may need a notice to be posted on a synchronizer at a particular time or times.
Such a process can create a timer to post the notice or notices. There are three types of timers:

• An absolute timer posts a notice on an event synchronizer at a particular date and
time of day.

• An interval timer posts a notice on an event synchronizer after a fixed amount of
time passes.

• A repetitive timer posts a notice on a synchronizer periodically, at a fixed interval of
time.

A timer posting a notice on a synchronizer has the same effect as a process posting a notice. If
processes are waiting on the synchronizer, one of the processes starts to run. If no processes are
waiting on the synchronizer, the timer increases the synchronizer's notice count by 1. If the
synchronizer is part of an event group, one of the processes waiting on the event group starts to
run. If the event group has no waiting processes, the timer increases the synchronizer's notice
count by 1.

Note
If notices are not retrieved from an event synchronizer on which a
repetitive timer is posting notices, the event synchronizer will
eventually overflow and become invalid.

Processes call subroutines to create, set, cancel, and destroy timers. A timer is private to a single
server and cannot be accessed by other servers.

Timer Subroutines
Table 5-1 lists the subroutines that create, destroy, set, and cancel timers. Programs written in
FTN must use the six-character subroutine names listed.

F i r s t E d i t i o n 5 _ 1

Subroutines Reference V: Event Synchronization

Table 5-1
Timer Subroutines

Name Function

TMRSCREA
TMRSCR
TMRSDEST
TMRSDE
TMRSSABS
TMRSSA
TMRSSINT
TMRSSI
TMRSSREP
TMRSSR
TMRSCANL
TMRSCN
TMRSGTMR
TMRSTI
TMRSLIST
TMRSLS

Creates a timer

Destroys a timer

Sets an absolute timer

Sets an interval timer

Sets a repetitive timer

Cancels a timer

Returns the timer type and information about
the current state of the timer
Lists the identifiers of the timers within a
server and the total number of timers within
the server

The following paragraphs describe the functions that timer subroutines perform.

Creating Timers
To create a timer, a process calls the subroutine TMRSCREA. TMRSCREA assigns an identifier
to the timer. This identifier becomes an input parameter to other subroutines that access the
timer. The calling process specifies the type of timer it is creating (absolute, interval, or
repetitive).

Setting Timers
A process can call the subroutine TMRSSABS to set an absolute timer, TMRSSINT to set an
interval timer, and TMRSSREP to set a repetitive timer. Each subroutine can set timers of only
one type. A timer must be set in order to post a notice.

5-2 First Edition

Timers

When a process calls a subroutine to set a timer, it specifies the event synchronizer on which the
timer is to post a notice, as well as the following information:

• For absolute timers, the date and time of day when the timer is to expire
• For interval timers, the interval of time after which the timer is to expire
• For repetitive timers, the interval of time at which the timer is to post notices

periodically

Cancelling Timers
A process can call the subroutine TMRSCANL to cancel a timer at any time after the timer is
created. A cancelled timer cannot post notices, but it can be reset by TMRSSABS, TMRSSINT,
or TMRSSREP.

Note
A process should cancel a timer before it destroys a synchronizer on
which the timer is set to post a notice.

Destroying Timers
When a timer is no longer needed, the process that created the timer can call the subroutine
TMRSDEST to destroy it.
The INITIALIZE_COMMAND_ENVIRONMENT (ICE) command with the -SERVER option
deallocates all timers and event synchronizers belonging to a user process. The ICE command
with the -SERVER option also logs out any child processes belonging to the user process. The
ICE command without the -SERVER option does not affect timers or event synchronizers. See
the PRIMOS Commands Reference Guide for information about the ICE command.

States of Interval and Absolute Timers
An absolute or interval timer is always in one of three states: initial, pending, or expired. An
absolute or interval timer enters:

• The initial state when a process creates or cancels it.
• The pending state when a process sets it.
• The expired state when the specified amount of time elapses. An absolute or interval

timer posts a notice on a synchronizer when it passes from the pending state to the
expired state. It remains in the expired state until a process sets, destroys, or cancels it.

F i r s t E d i t i o n 5 . 3

Subroutines Reference V: Event Synchronization

5-4

When a process calls a subroutine to set, cancel, or destroy an absolute or interval timer, the
subroutine returns an Expired Status value that is TRUE if the timer is in the expired state or
FALSE if it is not. The Expired Status value indicates whether a synchronizer was notified
before the timer was cancelled or destroyed.

States of Repetitive Timers
A repetitive timer is always in the initial state or the pending state. A repetitive timer enters the
initial state when a process creates or cancels it. It enters the pending state when a process sets it
and it remains in the pending state when the fixed interval of time elapses. A repetitive timer
posts notices on a synchronizer each time the specified interval of time elapses. The Expired
Status of a repetitive timer is always FALSE.

Include Files for Timers
The SYSCOM directory contains a number of include files for programs that invoke timer
subroutines. Timer include files define certain key values that correspond to numeric values
returned or expected by timer subroutines. These key values serve as status codes and other
arguments. Timer include files also define templates for data structures used by timer
subroutines.
Each programming language has its own separate include file. A program that calls timer
subroutines should include the timer include file for its language and use the key values defined
in the file, rather than their numeric equivalents.
The names of the include files for timers are of the form

TJMERMIKJNS.language

where language is an abbreviation specifying the programming language. For example, the timer
include file for Pascal is

TIMERMIK.INS.PASCAL

Before writing a program that invokes timer subroutines, consult the include file for the
program's language to determine the correct key values for that language.

Note
Because of the name length limits of the FTN language, the key
values in the FTN key file are substantially different from those in
other language files. The FTN timer status codes are listed in
Appendix C.

First Edition

Timers

r
Subroutine Descriptions
This section contains descriptions of the subroutines that create, use, and destroy timers. In the
subroutine descriptions, the data type declarations and the possible values for code are in PLA
format.

F i r s t E d i t i o n 5 _ -

Subroutines Reference V: Event Synchronization

TMRSCREA

TMR$CREA
TMR$CR
Creates a timer.

Usage

DCL TMRSCREA ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL TMRSCREA (type, timer Jdentif ier, code);

Parameters

type
INPUT. The kind of timer that TMRSCREA is to create. TMRSCREA can create absolute,
interval, and repetitive timers. Specify a key value defined by the timer include file for the
language of the calling program. The key value should specify the type of timer that is to be
created. For example, the PL/I include file defines the key values ABSOLUTE, INTERVAL,
and REPETITIVE.

timer Jdentif ier
OUTPUT. The identifier of the timer that TMRSCREA created.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSCREA was completed without error.

TMR_SC$NoResources
TMRSCREA did not create a timer because the system does not have the resources to
support another timer.

TMR_SC$MaxTimerAlloc
TMRSCREA did not create a timer because this server already had the maximum
number of timers allowed to it.

- _ 6 F i r s t E d i t i o n

Timers

TMRSCREA

Discussion

TMRSCREA creates an absolute, interval, or repetitive timer and returns an identifier by which
the timer can be accessed. TMRSCREA does not set the timer or specify which event
synchronizer the timer is to notify when it expires.
The value returned to timer Jdentif ier is used as an input parameter to other subroutines that
access the timer.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 5 - 7

Subroutines Reference V: Event Synchronization

TMRSDEST

TMR$DEST
TMR$DE
Destroys a timer.

Usage

DCL TMRSDEST ENTRY (FIXED BIN(15), BIT(l) ALIGNED, FIXED BIN(15));

CALL TMRSDEST (timerJdentif ier, expiredjstatus, code);

Parameters

timer Jdentif ier
INPUT. The identifier of the timer that TMRSDEST is to destroy.

expired jstatus
OUTPUT. A value indicating whether the timer is in the expired state. For absolute and
interval timers, TMRSDEST returns TRUE if the timer is in the expired state or FALSE if the
timer is in any other state. TMRSDEST sets Ihe value to 0 to indicate FALSE; it sets the
value's most significant bit to 1 to indicate TRUE. For repetitive timers, TMRSDEST always
returns FALSE.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSDEST was completed without error.

TMR_SC$InvTimer
TMRSDEST did not destroy a timer because timer Jdentif ier does not specify a valid
timer.

Discussion

TMRSDEST destroys the timer whose number is specified by timer Jdentif ier. TMRSCREA can
reassign the number of a destroyed timer to a new timer.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

5 _ 8 F i r s t E d i t i o n

Timers

TMRSSABS

r

r

TMR$SABS
TMR$SA
Sets an absolute timer.

Usage

DCL TMRSSABS ENTRY (FIXED BIN(15), FIXED BIN(15), 1,2 FIXED BIN(31),
2 FIXED BIN(31), BIT(l) ALIGNED, FIXED BIN(15));

CALL TMRSSABS (timerJdentif ier, sync Jdentif ier, expiration Jime,
expired jstatus, code);

Parameters

timer Jdentif ier
INPUT. The identifier of the absolute timer that TMRSSABS is to set.

sync Jdentif ier
INPUT. The identifier of the event synchronizer on which the absolute timer is to post a
notice when it expires. Use SYNSCREA to create an event synchronizer.

expirationjime
INPUT. The date and time of day when the absolute timer is to expire. Specify this value in
absolute time. Absolute time is expressed as the elapsed date and time, in milliseconds, since
midnight of January 1, 1901, in Greenwich Mean Time. The system rounds the expirationjime
value down to the next lower whole minute. Use the subroutine TMRSLOCALCONVERT to
convert local time to absolute time. For information about TMRSLOCALCONVERT, see the
Subroutines Reference III: Operating System.

expired jstatus
OUTPUT. A value indicating whether the timer was in the expired state when TMRSSABS
was called. TMRSSABS returns TRUE if the timer is in the expired state or FALSE if the
timer is in any other state. TMRSSABS sets the value to 0 to indicate FALSE; it sets the
value's most significant bit to 1 to indicate TRUE.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSSABS was completed without error.

F i r s t E d i t i o n 5 - 9

Subroutines Reference V: Event Synchronization

TMRSSABS

TMR_SC$InvTimer
TMRSSABS did not set the timer because timer Jdentif ier does not specify a valid
timer.

TMR_SC$InvTimeParameter
The expiration time specified by expirationjime is not valid because it is not greater
than the current system time.

Discussion

TMRSSABS is called to set an absolute timer to expire at a particular date and time of day. The
caller specifies the event synchronizer on which the timer is to post a notice when it expires.
TMRSSABS can reset an absolute timer while it is in the pending or expired state. You do not
need to cancel a pending timer before you reset it.
If the system time changes while an absolute timer is pending, the absolute timer will expire at
the absolute time based on the new system time.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

5 - 1 0 F i r s t E d i t i o n

Timers

TMRSSINT

r
TMRSSINT
TMR$SI
Sets an interval timer.

Usage

DCL TMRSSINT ENTRY (FIXED BINQ5), FIXED BIN(15), FIXED BIN(31),
BIT(l) ALIGNED, FIXED BIN(15));

CALL TMRSSINT (timerJdentif ier, sync Jdentif ier, expiration Jnterval,
expired^status, code);

Parameters

timer Jdentif ier
INPUT. The identifier of the interval timer that TMRSSINT is to set

sync Jdentif ier
INPUT. The identifier of the event synchronizer on which the interval timer is to post a
notice when it expires.

expiration Jnterval
INPUT. The interval of time after which the timer is to expire. This interval must be
expressed in milliseconds. The system rounds the value down to the next lower interval of
100 milliseconds, expiration Jnterval must not be equal to 0.

expired jstatus
OUTPUT. A value indicating whether the timer was in the expired state when TMRSSINT
was called. TMRSSINT returns TRUE if the timer is in the expired state or FALSE if the
timer is in any other state. TMRSSINT sets the value to 0 to indicate FALSE; it sets the
value's most significant bit to 1 to indicate TRUE.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSSINT was completed without error.

TMR_SC$InvTimer
TMRSSINT did not set an interval timer because the value of timer Jdentif ier does not
specify a timer within this server.

F i r s t E d i t i o n 5 - 1 1

Subroutines Reference V: Event Synchronization

TMRSSINT

TMR_SC$InvTimerParameter
expiration Jnterval is not valid because it is 0.

Discussion

TMRSSINT sets an interval timer to expire after an interval of time passes and to post a notice
on a specified event synchronizer when the timer expires.
TMRSSINT can reset an interval timer while it is in the pending state; there is no need to cancel
the timer before resetting it. If the system time is changed while an interval timer is in the
pending state, the timer expires when it would have expired if the system time had not been
changed.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

5-12 First Edition
^ >

Timers

TMRSSREP

r
TMR$SREP
TMR$SR
Sets a repetitive timer.

Usage

DCL TMRSSREP ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(31),
FIXED BIN(15));

CALL TMRSSREP (timerJdentif ier, sync Jdentif ier, expiration Jnterval, code);

Parameters

timer Jdentif ier
INPUT. The identifier of the repetitive timer that TMRSSREP is to set

sync Jdentif ier
INPUT. The identifier of the event synchronizer on which the timer is to post notices
periodically.

expiration Jnterval
INPUT. The interval of time at which the timer is to post notices periodically. Specify this
interval in milliseconds. The system rounds the value down to the next lower multiple of 100
milliseconds, expiration Jnterval must not be 0.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSSREP was completed without error.

TMR_SC$InvTimer
The value timer Jdentif ier does not specify a timer within this server.

TMR_SC$InvTimerParameter
The value specified by expiration Jnterval is not valid because it is 0.

F i r s t E d i t i o n 5 - 1 3

Subroutines Reference V: Event Synchronization

TMRSSREP

Discussion

TMRSSREP sets a repetitive timer to post a notice periodically, at a fixed interval of time, and
specifies the event synchronizer on which the timer is to post the notice. After TMRSSREP sets
the repetitive timer, the timer remains in the pending state until TMRSCANL cancels it. When
TMRSSREP sets a repetitive timer while it is in the pending state, TMRSSREP cancels the
current timing interval and the timer starts timing the new interval.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

~ >

5-14 First Edition

r-
Timers

TMRSCANL

TMRSCANL
TMR$CN
Cancels a timer.

Usage
DCL TMRSCANL ENTRY (FIXED BIN(15), BIT(l) ALIGNED, FIXED BIN(15));

CALL TMRSCANL (timerjidentifier, expired jstatus, code);

Parameters

timer jidentif ier
INPUT. The identifier of the timer that TMRSCANL is to cancel.

expired jstatus
OUTPUT. A value indicating whether the timer has already expired when it is cancelled. For
absolute and interval timers, TMRSCANL returns TRUE if the timer is in the expired state or
FALSE if the timer is in any other state. TMRSCANL sets the value to 0 to indicate FALSE; it
sets the value's most significant bit to 1 to indicate TRUE. For repetitive timers, expired jstatus is
always FALSE.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSCANL was completed without error.

TMR_SC$InvTimer
TMRSCANL did not cancel the timer because timer Jdentif ier does not specify a valid
timer.

Discussion
TMRSCANL cancels a pending absolute, interval, or repetitive timer. TMRSCANL cancels all
future periodic expirations of a repetitive timer. The expiredjstatus value of the timer indicates
whether the timer has already notified its synchronizer at the time when TMRSCANL cancels
the timer.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 5 - 1 5

Subroutines Reference V: Event Synchronization

TMRSGTMR

TMR$GTMR
TMR$TI
Returns information about a timer.

Usage

DCL TMRSGTMR ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT),
FIXED BIN(15));

CALL TMRSGTMR (timerJdentif ier, information, code);

Parameters

timer Jdentif ier
INPUT. The identifier of the timer about which TMRSGTMR is to return information.

information
INPUT -> OUTPUT. A pointer to a record to which TMRSGTMR returns information about
the timer.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSGTMR was completed without error.

TMR_SC$InvTimer
TMRSGTMR did not return information because the value of timer Jdentif ier does not
specify a valid timer.

Discussion

TMRSGTMR returns information about a timer to a record pointed to by information. The
program that calls TMRSGTMR must allocate eight words of memory for the record and pass
the address of the record to TMRSGTMR. Absolute, interval, and repetitive timers require
different types of records. The programmer must allocate the proper type of record for the timer
specified in the call to TMRSGTMR.

5 _ 1 S F i r s t E d i t i o n

Timers

TMRSGTMR

r

The record for absolute timers has the following format:

/* Declaration for Absolute Timers*/
del 1 AbsTimerlnfo based,

2 Timer fixed bin(15),
2 Sync fixed bin(15),
2 State fixed bin(15),
2 Kind fixed bin(15),
2 ExpirationTime like AbsoluteTime;

The fields of the record for absolute timers receive the following items of information:

Timer
The identifier of the timer about which TMRSGTMR returns information

Sync
The identifier of the event synchronizer that the timer is to notify when it expires

State
The state of the timer (initial, pending, or expired) when TMRSGTMR is executed

Kind
The kind of timer

ExpirationTime
The time when the timer is to expire, in absolute time. Absolute time is the elapsed date and
time since midnight of January 1, 1901, expressed in milliseconds. The timer include files
declare the absolute time data type.

The record for interval timers has the following format:

/* Declaration for Interval Timers*/
del 1 IntTimerlnfo based,

2 Timer fixed bin(15),
2 Sync fixed bin(15),
2 State fixed bin(15),
2 Kind fixed bin(15),
2 RemainingTime fixed bin(31);

F i r s t E d i t i o n 5 . 1 7

Subroutines Reference V: Event Synchronization

TMRSGTMR

The Timer, Sync, State, and Kind fields of the interval timer record receive the same
information as the corresponding fields in the absolute timer record. The following field is
unique to the interval timer record:

RemainingTime
Contains the amount of time remaining until the interval timer expires, at the time when
TMRSGTMR is executed.

The repetitive timer record has the following format:

/* Declaration for Repetitive Timers*/
del 1 RepTimerlnfo based,

2 Timer fixed bin(15),
2 Sync fixed bin(15),
2 State fixed bin(15),
2 Kind fixed bin(15),
2 RepState,

3 RemainingTime fixed bin(31),
3 Succeedinglntervals fixed bin(31);

The Timer, Sync, State, and Kind fields of the repetitive timer record receive the same
information as the corresponding fields in the absolute timer record. The RepState field is
unique to the repetitive timer record, and consists of the following elements:

RemainingTime
The amount of time remaining until the timer next posts a notice.

Succeedinglntervals
The length of the interval of time at which the timer periodically posts a notice.

The timer can be in any state when TMRSGTMR is executed. TMRSGTMR does not cancel or
in any way affect the timer about which it returns information. Note that the state of a timer
may change immediately after the call to TMRSGTMR.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

5 - 1 8 F i r s t E d i t i o n

Timers

TMR$LIST

TMR$LIST
TMR$LS
Lists the total number of timers within this server and their identifiers.

Usage

DCL TMRSLIST ENTRY (FIXED BIN(15), (*) FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL TMRSLIST (size, list, count, code);

Parameters

size
INPUT. The size of the caller allocated array list to which TMRSLIST is to return the
identifiers of the timers within this server.

list
OUTPUT. An array to which TMRSLIST returns the identifiers of the timers within the
server. The program that calls TMRSLIST must allocate memory for this array.

count
OUTPUT. The total count of timers within this server.

code
OUTPUT. The timer status code. The possible codes are:

TMR_SC$OK
The call to TMRSLIST was completed without error.

TMR_SC$ListTooSmall
The array list is not large enough to hold the identifiers of all the timers within this
server, and the information in list is not valid. However, the information returned to
count is valid. To correct this error, the caller should allocate memory for a larger array
based on the value of count.

Discussion

TMRSLIST returns the identifiers of all the timers within the server. It also returns the total
count of timers within the server.
Effective for PRIMOS Revision 22.0 and subsequent revisions.

F i r s t E d i t i o n 5 _ 1 9

Part IV, InterServer Communications

General Discussion of
InterServer Communications

Introduction
The Prime InterServer Communications (ISC) facility provides two-way message exchange
between pairs of concurrently mnning servers. For example, ISC can be used for the two-way
transfer of information between a server associated with a user process and a database server.
Another use of ISC would be to pair many servers to a single centralized server that logs status
information.
ISC uses the term server to refer to a single process or a group of closely cooperating processes.
PRIMOS places each terminal or phantom process in its own server when the process is
initialized. For example, when a user logs in, the user's process receives its own server name. A
PRIMIX child process, however, is placed in its parent's server. ISC message exchange can
involve servers for user processes or for system processes. Chapter 7 describes how to determine
the server name of a process.

Message exchange occurs within a session. A session is a one-to-one link between two active
servers. Only two servers can participate in a session; each server can both send and receive
multiple messages with the other server participating in the session. A server that is not a
participant in the session cannot read messages or otherwise interact with the session.
A server can participate in multiple concurrent sessions. A server can establish sessions to
several other servers. Two servers can be connected by more than one session. A server can even
establish a session with itself.
ISC permits you to perform message exchange between servers on different PRIMENET™
nodes. This is referred to as a remote session. During a remote session, ISC automatically
handles the interface with PRIMENET, making all ISC processing across PRIMENET nodes
appear identical to ISC processing within the same node. Special considerations for this type of
ISC processing are found in Chapter 13, Remote Sessions.
Servers can coordinate the sending and receiving of messages by using synchronizers. You can
configure synchronizers associated with specific ISC events to your server for the duration of
the session. When an ISC event occurs, ISC posts a notice on the appropriate synchronizer. For
example, when one server sends a message, ISC posts a notice on the other server's
ReadyToReceive synchronizer. The posting of this notice informs the server that a message is
pending, ready to be received. Responding to a notice posted on an ISC synchronizer is the

F i r s t E d i t i o n $ - 1

Subroutines Reference V: Event Synchronization

responsibility of the programmer. General information about synchronizers can be found in
Chapter 2. The ISC synchronizers are further described in Chapter 9.

Phases of an ISC Session
An ISC session consists of three basic phases: session establishment, message exchange (also
referred to as data transfer), and session termination.
Session Establishment. To establish a session, one server must send a session request, and the
other server must accept the request. Any server can request a session with any other server. The
servers can be on the same PRIMENET node, or on different nodes. However, you can request a
session only between servers that represent processes that are currently running. Session
establishment is described in Chapters 8 and 9.

Message Exchange. Once a session has been established, either server can begin sending
messages to the other server. Both servers can concurrently send and receive multiple messages.
ISC transmits messages exactly as specified; it does not group multiple messages together or in
any way process the contents of a message. Message exchange is described in Chapter 10.
Session Termination. Either server can terminate the session at any time during session
establishment or message exchange. Because a session can exist only between processes that are
currently logged in, the logout of a process automatically terminates any session in which it
participates. If a server or some system event terminates a session, the other server receives an
exception. An exception is a notification of an unusual event. After processing this exception,
the remaining server can continue to process previously queued messages. The remaining server
must then also terminate the session. Session termination is described in Chapter 11.

A Choice of Message Types
ISC provides facilities for several different kinds of messages:
Normal Messages are messages sent during an established session. The session default is
Normal message service. A Normal message can consist of two parts: a control part for short
messages (maximum of 128 characters), and a data part for longer messages (maximum of
32,630 characters). All ISC message types can have a control part; only Normal messages can
have a data part. The control part and data part of a Normal message differ in nature as well as
size. A control part is copied from an area in the sending program to an area in the receiving
program. A data part is created in the session's message area. Information used to locate this
message area is then sent to the other server; when the other server receives the message, ISC
uses this information to provide the receiving server with a pointer to the data part message. You
can send a Normal message that consists of only a control part, only a data part, or both a
control part and a data part. Information of any type can be sent in either the control part or the
data part of a message. You can send a Normal message that has neither a control part nor a data
part in order to synchronize the sending and receiving servers.

6 - 2 F i r s t E d i t i o n

General Discussion of ISC

Expedited Messages are messages sent during an established session. The session must be
specially configured to support exchange of Expedited messages. Expedited messages are short
messages (maximum of 64 characters) that consist of a control part only. An Expedited message
is copied from an area in the sending program to an area in the receiving program. Expedited
messages and Normal messages are queued separately. This enables you to read all your
Expedited messages first, then read your Normal messages.
Connect Messages are messages sent while you are establishing or terminating a session. They
are short messages (maximum of 128 characters) that consist of a control part only. A Connect
message is copied from an area in the sending program to an area in the receiving program. You
can use these short messages rather than fully establishing a session if only a single brief
message exchange is required. You can also use a Connect message when terminating a session
to indicate why the session is being terminated. Connect messages are further described in
Chapter 12.

Programming Considerations
You perform all ISC operations by issuing standard subroutine calls. ISC also provides
subroutine calls to determine status and statistical information about an ISC session. Two
PRIMOS commands (LIST.SESSIONS and LIST_SERVER_NAMES) also provide status
information. These PRIMOS commands are described in the PRIMOS Commands Reference
Guide.
In order to call ISC subroutines, you must provide certain information in your program. The
following three items (or their equivalents) are usually required in programs that perform ISC
operations:

• ISC key files
• An ISC structure file
• An array for brief messages

If your program allocates ISC synchronizers, you must also call subroutines to use these
synchronizers.

Key Files

You should include key files in your program for the subroutines that you call. ISC uses two
different key files, one for IS$ subroutines and another for SRSS subroutines. In addition, you
should include the key file for synchronizer subroutines used with ISC.
These key files contain key values for subroutine status codes and the special codes returned by
ISSGE, ISSGRS, and ISSGSS. Key files contain the key value equivalents for the integer values
returned by the subroutines. Always use the key values, not the integer values, for keys in your
program.

F i r s t E d i t i o n 6 - 3

Subroutines Reference V: Event Synchronization

The include files for ISC keys are located in the SYSCOM directory. The following key files
are provided:

• ISC_.KEYS.INS for IS$ subroutines (status codes and special codes)
• SRS_CODES.INS for SRSS subroutines
• SYNC_CODES.INS for synchronizer subroutines

In every case, there are different include files for different programming languages. For
example, the IS$ key file for PL/I is SYSCOM>ISC_KEYS.INS.PLl. Include in your program
the key file(s) with the suffix for your programming language. Key files are provided for FTN,
PL/I, Pascal, PMA, and the C programming language. F77 users should use the FTN file.

Note
Because of the name length limits of the FTN language, the key
values in the FTN key file are substantially different from those in
other language files. The key values for FTN keys are shown in
Appendix C.

The key values used by ISC are listed in Appendix C. You can also use the ERSPRINT and
ERSTEXT subroutines to get the error message text for an individual key. These subroutines are
described in the Subroutines Reference III: Operating System.

Structure Files

You should include in your program the ISC structures required for such operations as session
configuration and message specification. ISC provides template files for these structures in the
SYSCOM directory. Each structure file contains a complete set of templates for all ISC
structures; the SYSCOM directory contains different structure files for different programming
languages. For example, the structure file for PL/I is SYSCOM>ISC_STRUCTURES.INS.PLl.
Include in your program the structure file with the suffix for your programming language.
Structure files are provided for PL/I, Pascal, and the C programming language. The ISC
structures are shown in Appendix E.
The structures in these template files are defined as based variables. That is, they provide
templates for structures, but do not allocate any space for the structure itself. You must allocate
space for each structure that you use in your program. You then establish a pointer to each of
your structures for use by the ISC subroutines.

6 _ 4 F i r s t E d i t i o n

General Discussion of ISC

For example:

% i n c l u d e ' s y s c o m > i s c _ k e y s . i n s . p l l ' ; / * I n c l u d e k e y s * /
% inc lude ' syscom> isc_s t ruc tu res . i ns .p l l ' ; / * I nc lude temp la te s t ruc tu res * /
del is$sta entry(fixed bin (15), ptr, fixed bin(15)); /* Declare subroutine */
d e l m y s t a t s l i k e S e s s i o n S t a t i s t i c s B l o c k ; / * A s s o c i a t e y o u r s t r u c t u r e * /

/* with template structure */
d e l m y s t a t s p t r p t r ; / * D e c l a r e p o i n t e r t o y o u r s t r u c t u r e * /
mystatsptr = addr (mystats) ;
mystats.version = isc_version_number; /* Set version number of structure */
c a l l i s $ s t a (n u m b e r , m y l l n p t r , c o d e) ; / * C a l l s u b r o u t i n e * /

Note
All ISC structures contain a Version field. When using an include
file for ISC structures, use the ISC_VERSION_NUMBER key value
to set this Version field. The ISC_VERSION_NUMBER key is
found in the ISC_STRUCTURES.INS include files. You must set the
Version field for every ISC structure, including "blank" structures
used only for output.

Message Array

Connect messages, Expedited messages, and the control part of Normal messages are all copied
from one server to the other. In order to create or receive a message, you must establish a
message array in your program. This array should be 128 bytes in length; it can be shorter than
128 bytes if you define a shorter message control part. It must be aligned on a halfword
boundary. After creating this array, you must establish a pointer to this array and copy this
pointer into a Message Specifier in your program. Your program can contain multiple message
arrays and Message Specifiers. The Message Specifier is described in Chapter 10.

Synchronizers

If ISC synchronizers are used to coordinate calls to ISC subroutines, the programmer must
retrieve a notice from the appropriate synchronizer and then perform the corresponding
operation. For example, ISC posts a notice on the ReadyToReceive synchronizer to inform a
server that there is a message ready to be received. Therefore, the server receiving the message
must first retrieve the notice from its ReadyToReceive synchronizer, then call ISSRM to receive
the message. You can retrieve a notice by calling either SYNSWAIT or SYNSRTRV. You use
other subroutines to retrieve notices from a synchronizer that is a member of an event group.
Notice retrieval subroutines are described in Chapters 2 and 3; ISC synchronizers are described
in Chapter 9.

F i r s t E d i t i o n 6 - 5

Server Names

Introduction
Before a process can exchange messages with another process, the process initiating the message
exchange session must know the server name of the intended session recipient.
PRIMOS automatically assigns a server name to each process during the login operation. The
server name is a computer-generated name that consists of a string of twelve consonants. A user
process does not have the same server name during subsequent logins. (PRIMOS uses the
system clock to generate server names. Therefore, a server name is always unique for that
system, unless the system clock is reset.) Because you must supply the current server name of a
process to establish an ISC session, you can only send messages to a process that is currently
logged on to the system.
Some processes installed on the system which do not log in and log out, also have server names.
These server names are standard names that remain the same, rather than computer-generated
names.
A phantom process receives its own server name when it is spawned; this server name persists
until the process terminates. A PRIMIX child process is assigned the same server name as its
parent process.
The D^TIALIZE_COMMAND_ENVIRONMENT (ICE) command with no options does not
affect sessions, synchronizers, or timers. The ICE command with the -SERVER option
terminates that user's sessions, and deallocates any synchronizers and timers belonging to that
user. ICE -SERVER reinitializes the server's SessionRequestPending synchronizer. It also logs
out any child processes belonging to the user process.
The SRSS subroutines and the PRIMOS command LIST_SERVER_NAMES enable users to
determine the server name of a process. To determine the server name of a process, call
SRSSGN. To retrieve a list of all active server names on your node, call SRSSLN or use the
PRIMOS command LIST_SERVER_NAMES.
A server name is unique within a node, but a server name is not always unique across nodes.
The server name is one component of the server's Low Level Name (LLN), which uniquely
identifies the server across nodes. An LLN contains the server name and the name of the node
on which that server is running. To establish a message exchange session, you must know the
LLN of the recipient.

F i r s t E d i t i o n 7 - 1

Subroutines Reference V: Event Synchronization

Server Name Subroutines
Table 7-1 lists the subroutines that identify the server name corresponding to a process and the
subroutines used to catalog and look up a server's Low Level Name.

Table 7-1
Server Name Subroutines

N a m e F u n c t i o n
ISNSC Catalogs a server's Low Level Name
ISN$L Looks up a server's Low Level Name
ISNSRC Recatalogs a server's Low Level Name
ISNSUC Uncatalogs a server's Low Level Name
SRSSGN Gets the server name of a process
SRSSGP Gets the process numbers of all processes asso

ciated with a server name
SRSSLN Lists the server names on your system

Programs that use ISN$ subroutines should include the SYSCOM>ERRD.INS error code file
with the appropriate language suffix. Programs that use SRSS subroutines should include the
SYSCOM>SRS_CODES.INS status code file with the appropriate language suffix.

Low Level Names
A low level name has the following format:

del 1 LowLevelName,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 ServerName char(12) var,
2 ForCIientUse fixed bin(31),
2 Reserved (13) fixed bin(15);

The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

7-2 First Edition

Server Names

NodeName
The PRIMENET node name that identifies the system that is running the server. You can set
this field to null in a Low Level Name used exclusively for local (non-remote) sessions. You
can use GSNAMS to determine the NodeName element of your LLN. GSNAMS is described
in the Subroutines Reference III: Operating System.

ServerName
The system-assigned server name. You can use SRSSGN to determine the ServerName
element of an LLN.

ForCIientUse
An area that you can use for whatever purpose you wish. The contents of this field are not
interpreted by ISC.

Reserved
For use by ISC only.

Cataloging Low Level Names
A server can use the ISN$ subroutines to catalog its own Low Level Name in an easily
accessible location. This greatly assists other users who need to know the LLN of the server
before they can send a message to that server.
Each server that wishes to be available for ISC message exchange should determine its own
LLN and then catalog this LLN in a High Level Name File (HLNF). If you wish, you can
catalog your own Low Level Name as part of your login procedure. Each server should catalog
its own LLN.
The System Administrator should establish conventions for the location and naming of High
Level Name Files. These naming conventions permit users to quickly locate the desired HLNF.
The name of the HLNF should be a name readily identified with the server, such as the user ID.

Following these naming conventions, you use ISNSC to establish an HLNF for your server.
Each HLNF contains the LLN of one server. Other users can read your current LLN from your
HLNF using the ISNSL routine.

Note
When you use BIND to link a program that contains ISNS
subroutines, you must explicitly link the LIB>ISNLIB library.

You should provide ACL protection to each HLNF to enhance system security. Protecting the
HLNF against unauthorized deletion or write operations prevents the substitution of the name of
a dummy ("Trojan horse") server for the name of a real system server. The server should have
full access to its own HLNF; other users should be restricted to LUR access. ACL protection of
files is described in the PRIMOS User's Guide.

F i r s t E d i t i o n 7 . 3

Subroutines Reference V: Event Synchronization

When a process logs out, its LLN becomes invalid. For this reason, you should either:

1. Use ISNSUC to uncatalog (delete) your HLNF each time you log out, then use ISNSC
to catalog an HLNF containing a new LLN each time you log in.

2. Use ISNSRC to recatalog (update) your LLN each time you log in.

The former method has the advantage of not leaving an obsolete LLN in your HLNF while your
process is logged out. The latter method is especially useful when updating system processes.
ISNSRC can also be used to recatalog an LLN of a running process in order to update the
ForCIientUse field of the LLN.

7 . 4 F i r s t E d i t i o n

Server Names

ISNSC

ISN$C
Catalogs a server's Low Level Name in a High Level Name File.

Usage
DCL ISNSC ENTRY (CHAR(*) VAR, PTR, FIXED BIN(15));

CALL ISNSC (hlnf, lln, code);

Parameters

hlnf
INPUT. The pathname of the High Level Name File to be created by this operation. The
directory portion of this pathname should follow an agreed-upon convention for the location
of High Level Name Files. The filename portion of this pathname should be a name (such as
a user ID) commonly associated with your process, hlnf can be an absolute pathname or a
relative pathname. If hlnf is a relative pathname (for example, *>MYID) the High Level
Name File is created in the currently attached directory; ISNSC does not use the PRIMOS
search rules facility. The pathname cannot contain wildcard characters or a password.

lln
INPUT. A pointer to a Low Level Name structure in your program. ISNSC copies the Low
Level Name from this structure into the High Level Name File.

code
OUTPUT. Standard error code. Possible values include:

ESOK
The operation completed successfully.

ESEXST
The specified HLNF cannot be created because an HLNF with this pathname already
exists. Instead, use ISNSRC to recatalog the LLN.

Discussion

ISNSC takes as input the Low Level Name (LLN) of a server and a pathname for a High Level
Name File (HLNF). It creates the specified HLNF, and then copies the Low Level Name into
this HLNF. This operation is known as cataloging a Low Level Name. Cataloging your LLN in
an HLNF enables other users to look up your LLN. A server must know the LLN of a recipient
to initiate ISC operations.
Each HLNF contains one Low Level Name.

F i r s t E d i t i o n 7 . 5

Subroutines Reference V: Event Synchronization

ISNSC

The System Administrator should establish conventions for the location and names of High
Level Name Files. By following these conventions, users on the system can catalog an LLN in a
location that can be easily located by other users. Users can use ISNSL to read a server's HLNF
to determine the server's Low Level Name.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

7-6 First Edition

Server Names

ISN$L

ISN$L
Looks up a server's Low Level Name in a High Level Name File.

Usage

DCL ISNSL ENTRY (CHAR(*) VAR, PTR, FIXED BIN(15));

CALL ISN$L (hlnf, lln, code);

Parameters

hlnf
INPUT. The pathname of an existing High Level Name File that contains a Low Level Name.
This pathname can be an absolute pathname or a relative pathname. If hlnf is a relative
pathname (for example, *>MYID) the HLNF must be in the currently attached directory;
ISNSL does not use the PRIMOS search rules facility. The pathname cannot contain wildcard
characters or a password.

lln
INPUT -> OUTPUT. A pointer to a Low Level Name structure in your program. ISNSL uses
this pointer to copy a Low Level Name from the High Level Name File into your Low Level
Name structure.

code
OUTPUT. Standard error code. Possible values include:

ESOK
The operation completed successfully.

ESFNTF
The specified HLNF does not exist.

ESFER
The specified HLNF pathname refers to a file system object that is not an HLNF

Discussion
ISNSL takes as input the pathname of a High Level Name File (HLNF) and returns the Low
Level Name cataloged in that HLNF. By using this subroutine, you can look up the LLN of a
server.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

F i r s t E d i t i o n 7 . 7

Subroutines Reference V: Event Synchronization

ISNSRC

ISN$RC
Recatalogs a server's Low Level Name in a High Level Name File.

Usage

DCL ISNSRC ENTRY (CHAR(*) VAR, PTR, FIXED BIN(15));

CALL ISNSRC (hlnf, lln, code);

Parameters

hlnf
INPUT. The pathname of an existing High Level Name File. This pathname can be an absolute
pathname or a relative pathname. If hlnf is a relative pathname (for example, *>MYID) the
HLNF must be in the currently attached directory; ISNSRC does not use the PRIMOS search
rules facility. The pathname cannot contain wildcard characters or a password.

lln
INPUT. A pointer to a Low Level Name structure in your program. ISNSRC copies the Low
Level Name from this structure into the High Level Name File, replacing the previous entry.

code
OUTPUT. Standard error code. Possible values include:

ESOK
The operation completed successfully.

ESFNTF
The specified HLNF does not exist. Use ISNSC to create an HLNF and catalog the
LLN.

ESFER
The specified HLNF pathname refers to a file system object that is not an HLNF.

Discussion

ISNSRC takes as input a pointer to the Low Level Name of a server and the pathname of a High
Level Name File. This High Level Name File must have been previously used to catalog a Low
Level Name. ISNSRC replaces the contents of the High Level Name File with the specified Low
Level Name.
ISNSRC is commonly used to update a cataloged Low Level Name following a change to the
ForCIientUse field of the LLN.
Effective for PRIMOS Rev. 22.0 and subsequent revisions.

7 _ 8 F i r s t E d i t i o n

Server Names

ISNSUC

ISNSUC
Uncatalogs (deletes) a server's High Level Name File.

Usage

DCL ISNSUC ENTRY (CHAR(*) VAR, FIXED BIN(15));

CALL ISNSUC (hlnf, code);

Parameters

hlnf
INPUT. The pathname of an existing High Level Name File. This pathname can be an
absolute pathname or a relative pathname. If hlnf is a relative pathname (for example,
*>MYID) the HLNF must be in the currently attached directory; ISNSUC does not use the
PRIMOS search rules facility. The pathname cannot contain wildcard characters or a
password.

code
OUTPUT. Standard error code. Possible values include:

ESOK
The operation completed successfully.

ESFNTF
The specified HLNF does not exist, and therefore cannot be deleted.

ESFER
The specified HLNF pathname refers to a file system object that is not an HLNF. The
file system object was not deleted.

Discussion

ISNSUC takes as input the pathname of an existing High Level Name File. It deletes the High
Level Name File. ISNSUC can only perform this delete operation if the High Level Name File
contains a Low Level Name.
You should perform an uncataloging operation when you terminate a process. If you do not
uncatalog the HLNF of a terminated process, other users may unintentionally use the HLNF to
look up an obsolete LLN.
Effective for PRIMOS Rev. 22.0 and subsequent revisions.

F i r s t E d i t i o n 7 - 9

Subroutines Reference V: Event Synchronization

SRSSGN

SRS$GN
Gets the server name of a process.

Usage

DCL SRSSGN ENTRY (FIXED BIN(15), FIXED BIN(15), CHAR(12) VAR,
FIXED BIN(15));

CALL SRSSGN (who, my sync, name, code);

Parameters

who
INPUT. The process number of the process whose server name is desired. The PRIMOS
command STAT USER lists the numbers of all of the processes currently running on your
system. To get the server name of the current process, specify 0.

mysync
OUTPUT. If who denotes the calling process, this parameter returns the number of the
SessionRequestPending synchronizer associated with this server. For all other processes, this
parameter returns NullSyncNum.

name
OUTPUT. The server name of the requested process.

code
OUTPUT. The status code. The possible codes are:

SRS_SC$OK
The operation completed successfully.

SRS_SC$NoSuchProcess
SRSSGN returns this value if who is not the process number of a running process.

Discussion

SRSSGN takes as input the process number of a user process and returns the server name for
that process. It also can return the identifier of the server's SessionRequestPending synchronizer.
This synchronizer is further described in Chapter 9.
Effective for PRIMOS Rev. 22.0 and subsequent revisions.

7 - 1 0 F i r s t E d i t i o n

Server Names

SRSSGP

SRS$GP
Gets the process numbers of all processes that share a specified server name.

Usage

DCL SRSSGP ENTRY (CHAR (*) VAR, FIXED BIN(15), (*) FIXED BIN(15),
FIXED BINQ5), FIXED BIN(15));

CALL SRSSGP (name, arraysize, array, numproc, code);

Parameters

name
INPUT. The name of the server whose member processes are to be listed. You can input the
server name as either uppercase or lowercase letters.

arraysize
INPUT. The number of process numbers that you expect to be returned by this subroutine.
This should be the same size as the array you specify in array to hold the returned process
numbers. An error occurs if you specify an array size smaller than the actual number of
processes for the server.

array
OUTPUT. An array containing the process numbers returned by this subroutine. You create
this array in your program and supply its name to the array parameter. PRIMOS copies the
process numbers into the array you specified.

numproc
OUTPUT. The number of processes that are members of this server.

code
OUTPUT. The status code. The possible codes are:

SRS_SC$OK
The operation completed successfully.

SRS_SC$NoSuchServer
SRSSGP returns this value if name does not specify the server name of an active server.

SRS_SC$ListTooSmall
SRSSGP returns this value if arraysize is smaller than the number of processes to be
returned.

F i r s t E d i t i o n 7 - 1 1

Subroutines Reference V: Event Synchronization

SRSSGP

Discussion

SRSSGP takes as input a server name and returns the process numbers of all processes that share
that server. Most server names correspond to only a single process, but there are cases where
multiple processes share the same server.
If there are more process numbers to be returned than space available in array, SRSSGP returns
ListTooSmall and sets numproc to indicate the actual number of processes.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

7 - 1 2 F i r s t E d i t i o n

Server Names

SRSSLN

SRS$LN
Lists the names of all active servers.

Usage

DCL SRSSLN ENTRY (FIXED BIN(15), (*) CHAR(12) VAR, FIXED BIN(15),
FIXED BIN(15));

CALL SRSSLN (numservers, names, numnames, code);

Parameters

numservers
INPUT. The number of server names that you wish to retrieve. This subroutine begins
retrieving the first server name on the system and continues until it retrieves the number of
server names specified in this parameter. If you specify a number larger than the number of
active servers, SRSSLN retrieves the names of all of the servers currently running on the
system.

names
OUTPUT. An array of server names retrieved by this subroutine. You create this array in
your program and supply its name here. PRIMOS copies the server names into the array.
Depending on the value of numservers, this array contains either the specified number of
server names, or the names of all of the servers currently running on the system.

numnames
OUTPUT. The number of server names retrieved. This parameter is only set if code is
SRS_SC$OK.

code
OUTPUT. The status code. The possible codes are:

SRS_SC$OK
The operation completed successfully.

SRS_SC$ListTooSmall
SRSSLN returns this value if numservers is smaller than the actual number of active
servers. If this status code is returned, names records the number of server names
specified in numservers, and numnames is not set.

F i r s t E d i t i o n 7 - 1 3

Subroutines Reference V: Event Synchronization

SRSSLN

Discussion

SRSSLN returns a list of the names of active servers on your system. You can either return a
complete list of active servers, or list a specified number of active servers. The order in which
server names are returned, and which server names will be returned in a partial list are both
unpredictable.
Effective for PRIMOS Rev. 22.0 and subsequent revisions.

7 - 1 4 F i r s t E d i t i o n

Establishing a Session

Introduction
When you wish to initiate an ISC message exchange session, you must specify the Low Level
Name (LLN) of the recipient server, and the parameters to be used during the session. This is
known as requesting a session. If the system can fulfill the specified parameters, your session is
assigned a session number and your session request is sent to the recipient server. The recipient
server can either accept or reject the session request.
To establish a session, the two servers call the subroutines shown in Table 8-1 in the order
shown:

Table 8-1
ISC Session Establishment Subroutines

N a m e F u n c t i o n
ISSRS Initiator requests the session
ISSGRQ Recipient gets the session request
ISSAS Recipient accepts the session
ISSGRS Initiator gets the session request response

This chapter and the following chapter describe how to request a session. This chapter describes
the basic session request operations. It assumes all session configuration parameters are set to
default values. Chapter 9 describes how to assign nondefault session configuration parameters
during session establishment.

Session Requests and Session Numbers
A session is a two-way connection established between two servers. ISC message exchange can
only be performed within a session. A session is always between two and only two servers: the
server that initiates the session, and the server that is the recipient of the session request. Note
that the terms initiator and recipient refer to the establishment of a session, not the message
exchange performed during the session. A session permits two-way communications; both
servers can send or receive messages during a session. The session ends for each server when
that server terminates the session, or when the server is logged off.

F i r s t E d i t i o n 8 - 1

Subroutines Reference V: Event Synchronization

Each server identifies each of its sessions by means of a unique session number. ISC
automatically generates these session numbers during session establishment. ISSRS (the Request
Session subroutine) returns a session number to the session initiator. ISSGRQ (the Get Session
Request subroutine) returns a session number to the session recipient. There is no relationship
between the session number the initiator uses to identify the session and the session number the
recipient uses to identify the same session. Each server uses its own session number to perform
all subsequent operations during the session.
Each server can conduct multiple concurrent sessions, each session having its own unique
session number. A server conducting a session with itself would be assigned two different
session numbers, one as the session initiator and one as the session recipient.

Establishing a Session
You request a session using the ISSRS (Request Session) subroutine. To do so, you specify the
Low Level Name of the recipient (The format of a Low Level Name is described in Chapter 7.)
ISSRS returns a session number, which you use to identify this session for all other ISC
subroutines. The session request is queued to the recipient server.
When you call ISSRS to request a session, ISC posts a notice on the SessionRequestPending
synchronizer belonging to the intended session recipient. This informs the session recipient that
a session request is available to be received. This synchronizer is further described in Chapter 9.
The session recipient retrieves this notice, then receives the session request using the ISSGRQ
(Get Session Request) subroutine. ISSGRQ returns a session number to the recipient server.
ISSGRQ also returns authentication information about the session initiator and configuration
information about the session. The authentication information includes the user ID, project ID,
and ACL groups of the session initiator. (Authentication information may not be available for
some servers on remote nodes; refer to Chapter 13 for details.) ISC performs no processing on
this authentication information; it simply makes this information available to the session
recipient. The session recipient should use this information to determine whether or not to
establish a session with the session requestor.
If the session recipient wishes to participate in the requested session, it calls the ISSAS (Accept
Session) subroutine. If the session recipient does not wish to participate in the requested session,
it calls the IS$TS (Terminate Session) subroutine. ISSTS is described in Chapter 11. Upon
successful completion of a call to ISSAS, the recipient's side of the session is established, and
the recipient server can proceed immediately to exchanging messages.
When the session recipient calls ISSAS, ISC posts a notice on the session initiator's
SessionResponsePending synchronizer. This informs the session initiator that a response to the
session request has arrived. This synchronizer is further described in Chapter 9.
The session initiator retrieves this notice, then completes session establishment by getting the
response to the session request using the ISSGRS (Get Session Response) subroutine. The
initiator can then proceed to exchanging messages.

8 - 2 F i r s t E d i t i o n

Establishing a Session
ISSRS

r

r

IS$RS
Requests the establishment of an ISC message session.

Usage

DCL ISSRS ENTRY (PTR OPTIONS(SHORT), PTR OPTIONS(SHORT),
PTR OPTIONS(SHORT), FIXED BIN(15),
PTR OPTIONS(SHORT), FIXED BINQ5));

CALL IS$RS (lln, connectmessage, config, number, syncs, code);

Parameters

lln
INPUT. A pointer to the Low Level Name (LLN) structure of the intended session recipient.
You can determine the LLN of a server by using the ISNSL subroutine. The LLN pointer
returned by that subroutine can be used as the value for this parameter. You can specify a
ForCIientUse field value as part of the LLN.

connectmessage
INPUT. Either supply a null value or specify a pointer to a Message Specifier in your
program. The Message Specifier should contain a pointer to the text of the Connect message.
If specified, this parameter sends a brief Connect message to the session recipient. A null
value does not send a Connect message. The Message Specifier structure is described in
Chapter 10. Connect messages are further described in Chapter 12.

config
INPUT. Either supply a null value or specify a pointer to a Session Configuration Block in
your program. You can use the Session Configuration Block to specify local and global
parameters for the session: the number and length of message queues, the size of messages
and buffers, and the number of synchronizers to establish. A null pointer value sets all of
these parameters to default values. These parameters and their default values are further
described in Chapter 9.

number
OUTPUT. The initiator's session number assigned to this session.

syncs
INPUT —» OUTPUT. A pointer to your Session Synchronizers List. You supply a pointer to a
blank Session Synchronizers List in your program. ISC uses this pointer to write identifiers
for your synchronizers into your Session Synchronizers List. The Session Synchronizers List
is described in Chapter 9.

F i r s t E d i t i o n 8 - 3

Subroutines Reference V: Event Synchronization

ISSRS

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$NoRoom
ISC is unable to perform the operation at this time due to system limitations. For
example, this code is returned if you have requested a session with a server that already
has 63 pending session requests.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$TooManySessions
You have exceeded your quota for concurrent sessions. In order to request a new
session, you must terminate an existing session.

ISC_SC$InvalidConfig
You have requested an invalid configuration for the session. This error is returned if a
configuration parameter value is outside of the range of permitted values. It is also
returned if you did not set the reserved configuration parameters to zeros.

ISC_SC$BadVersion
You have specified an invalid version number in one of the structures used by this
subroutine.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSRS is called by the session initiator. It requests an ISC session between two servers. You
specify the Low Level Name of the recipient server, and upon successful completion, your
session request is sent to the server you specified.

Upon successful completion, ISSRS returns a session number assigned to this session. The
session number returned is the initiator's session number; the recipient server receives its own
session number.
ISSRS permits you to configure the global parameters of the session and your own local
parameters for the session. You can explicitly configure each of these parameters, or specify that
the default configuration for all of these parameters should be used. For further details on
configuration parameters and synchronizers, refer to Chapter 9.

8 - 4 F i r s t E d i t i o n

Establishing a Session
ISSRS

ISSRS permits you to send information to the other server. You can include information in the
ForCIientUse field of the Low Level Name, and you can send a Connect message when you call
ISSRS. When the session recipient calls ISSGRQ to get the session request, it can receive both
the Low Level Name and the Connect message. For additional information about Connect
messages, refer to Chapter 12.
Effective for PRIMOS Rev. 22.0 and subsequent revisions.

r F i r s t E d i t i o n 8 - 5

Subroutines Reference V: Event Synchronization

ISSGRQ

IS$GRQ
Gets a request for the establishment of an ISC session.

Usage

DCL ISSGRQ ENTRY (PTR OPTIONS(SHORT), PTR OPTIONS(SHORT),
PTR OPTIONS(SHORT), FIXED BIN(15),
PTR OPTIONS(SHORT), FIXED BIN(15));

CALL ISSGRQ (lln, connectmessage, config, number, initiatorJd, code);

Parameters

lln
INPUT -+ OUTPUT. A pointer to the Low Level Name (LLN) structure of the recipient. This
is the LLN supplied by the initiator when requesting this session. You supply a pointer to a
blank Low Level Name structure in your program. ISC uses this pointer to write the LLN into
your Low Level Name structure. This LLN contains the ForCIientUse field specified by the
session initiator.

connectmessage
INPUT -» OUTPUT. A pointer to the Connect message sent by the session initiator. You
supply either a null pointer or a pointer to a Message Specifier. ISC uses the pointer you
supplied to copy the Connect message into your message array. If you supply a null pointer,
no Connect message can be received. The Message Specifier structure is described in Chapter
10. Connect messages are further described in Chapter 12.

config
INPUT -> OUTPUT. Either supply a null value or specify a pointer to a blank Session
Configuration Block in your program. ISC uses this pointer to copy the global configuration
parameter values supplied by the initiator into your Session Configuration Block. Local
configuration parameters are not returned. Refer to Chapter 9 for further details.

number
OUTPUT. The recipient's session number assigned to this session.

initiator Jd
INPUT -> OUTPUT. A pointer to an Initiator Authentication Block, which contains
authentication information about the initiator. You supply a pointer to a blank Initiator
Authentication Block in your program. ISC uses this pointer to write the initiator's
authentication information into your Initiator Authentication Block.

8 _ 6 F i r s t E d i t i o n

Establishing a Session
ISSGRQ

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$LongMessage
You have successfully received a session request and ISC has allocated a session
number, but the message array in your program was too small for the Connect message
sent with the session request. The Connect message has therefore been truncated.

ISC_SC$NothingYet
No new session request has arrived.

ISC_SC$BadMessage
The Message Specifier is invalid. Correct your Message Specifier and call ISSGRQ
again to receive the session request.

ISC_SC$TooManySessions
You have exceeded your quota for concurrent sessions. The pending session request has
been terminated by the system. Before you can get a request for a new session, you
must terminate an existing session.

ISC_SC$BadVersion
You have specified an invalid version number in one of the structures used by this
subroutine. All ISC structures must be assigned a version number. Correct the version
number and call ISSGRQ again to receive the session request.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSGRQ is called by the session recipient. It gets a request for an ISC session that was sent
to this server. Usually, this subroutine call is issued after a wait on the server's
SessionRequestPending synchronizer (described in Chapter 9), so that this subroutine is called
upon notification of a Request Session operation. If your server is likely to be involved in
multiple concurrent sessions, you probably would not wish to halt all server activity while
waiting for a session request. To avoid this, you should place your SessionRequestPending
synchronizer in an event group with synchronizers belonging to existing sessions, then wait on
the event group.

Upon successful completion, ISSGRQ returns a session number assigned to this session. You use
this session number to perform all subsequent operations during this session.

F i r s t E d i t i o n 8 - 7

Subroutines Reference V: Event Synchronization

ISSGRQ

ISSGRQ also returns information that was supplied by the session initiator in ISSRS. It can
return a Low Level Name, global configuration parameters, and a Connect message to structures
that you defined in your program. You must specify pointers to the appropriate structures to
have this information copied into those structures. A pointer to a structure is required for the
Low Level Name and Initiator Authentication Block; in the other cases you can specify either a
pointer to a structure or a null pointer. If you specify a null pointer, this information is not
reported to you.
ISC uses the initiator Jd pointer to copy information about the session initiator into a blank
Initiator Authentication Block in your program. Your program can use this information to
determine whether or not to establish a session with the server requesting the session. For
example, your program could compare the initiator's user ID with a list of eligible users, or your
program could examine the initiator's ACL rights to a particular file (using the CALACS
subroutine) to determine if it will accept the session request. The Initiator Authentication Block
has the following format:

del 1 InitiatorAuthBlock,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 ProjectID char(32) var,
2 FullID,

3 UserlD char(32) var,
3 ACLGroupsCount fixed bin(15),
3 ACLGroups (32) char(32) var;

The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

NodeName
The PRIMENET node name that identifies the system that is running the server.

ProjectID
The ID of the project that the server belongs to. If the session initiator is on a remote node,
this field may contain a remote project ID or a null value. Refer to Chapter 13 for details.

FullID
The ID of the initiator's process, including the user ID, a count of the ACL groups that the
initiator belongs to, and a list of those ACL groups. If the session initiator is on a remote
node, the UserlD field may contain a remote ID or a null value. If the UserlD field is null,
the ACL group information is also null. Refer to Chapter 13 for details.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

8 - 8 F i r s t E d i t i o n

Establishing a Session
ISSAS

IS$AS
Accepts an ISC session.

Usage

DCL ISSAS ENTRY (FIXED BIN(15), PTR OPTIONS (SHORT),
PTR OPTIONS(SHORT), PTR OPTIONS(SHORT),
FIXED BIN(15));

CALL IS$AS (number, connectmessage, config, syncs, code);

Parameters

number
INPUT. Your session number for the session to be accepted. You get this session number as
output from the ISSGRQ subroutine.

connectmessage
INPUT. Either supply a null value or specify a pointer to a Message Specifier in your
program. The Message Specifier should contain a pointer to the Connect message. If
specified, this parameter sends a brief Connect message to the session initiator. A null value
does not send a Connect message. The Message Specifier structure is described in Chapter 10.
Connect messages are further described in Chapter 12.

config
INPUT. Either supply a null value or specify a pointer to a Session Configuration Block in
your program. You can use the Session Configuration Block to specify local parameters for
your server in this session. The global session parameters have already been established by
the initiator using ISSRS. These local parameters include which synchronizers to establish and
their threshold values. Synchronizers are discussed in Chapter 9. A null value sets all of these
parameters to default values.

syncs
INPUT -> OUTPUT. A pointer to the Session Synchronizers List. You supply a pointer to a
blank Session Synchronizers List in your program. ISSAS creates the synchronizers you
specified in config, then uses this pointer to write identifiers for these synchronizers into your
Session Synchronizers List. Refer to Chapter 9 for a description of this structure.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

F i r s t E d i t i o n 3 . 9

Subroutines Reference V: Event Synchronization

ISSAS

ISC_SC$NoRoom
ISC is unable to perform the operation at this time due to system limitations. Terminate
one of your other sessions to free resources. If this problem is recurrent, request that the
System Administrator enlarge your allotment of dynamic segments.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$InvalidConfig
You have requested an invalid configuration for the session. This error is returned if you
have specified a queue threshold value that is outside of the range of permitted values or
a threshold for a queue that is not configured. It is also returned if you did not set the
Reserved local configuration parameter to zeros.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$Established
You have already accepted this session; the current operation is therefore ignored.

ISC_SC$Terminated
You cannot accept this session because the session has already been terminated, either
by the initiator or by the system.

ISC_SC$BadVersion
You have specified an invalid version number in one of the structures used by this
subroutine.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSAS is called by the session recipient. It responds to a request for an ISC session between two
servers. You use this subroutine to accept a session request; to reject a session request, use
ISSTS, which terminates the session. To either accept or reject a session, specify the session
number assigned to the session, which you received from ISSGRQ. Upon successful completion
of a call to ISSAS, the session is fully established and available for message exchange.
Before calling ISSAS, you establish pointers to a Session Configuration Block and a Session
Synchronizers List in your program. Upon successful completion of ISSAS, ISC establishes the
local configuration parameters that you specified in the Session Configuration Block, and
returns identifiers to your synchronizers in the Session Synchronizers List. If you specify a null
value for the Session Configuration Block pointer, ISSAS establishes the default local

8 - 1 0 F i r s t E d i t i o n

Establishing a Session
ISSAS

configuration parameters and returns identifiers for the default synchronizers to the Session
Synchronizers List. You can specify your own local parameters even if the session initiator has
specified a default configuration. Do not specify local parameters that are not supported by the
global session configuration.
Effective for PRIMOS Rev. 22.0 and subsequent revisions.

F i r s t E d i t i o n 8 - 1 1

Subroutines Reference V: Event Synchronization

ISSGRS

IS$GRS
Gets a response to an ISC session request operation. Upon successful completion, an
ISC session is fully established.

Usage

DCL ISSGRS ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT),
PTR OPTIONS(SHORT), FIXED BIN(15),
PTR OPTIONS(SHORT), HXED BINQ5));

CALL ISSGRS (number, reserved, recipient Jd, response, connectmessage, code); ^

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
returned by the ISSRS subroutine that you used to request the session.

r e s e r v e d - ^ ^
INPUT. A field reserved for system use. Its value must be null.

recipientjd
INPUT -» OUTPUT. A pointer to authentication information about the session recipient. You
establish a pointer to a blank Target Authentication Block in your program. Upon successful
completion, ISC writes the recipient's user ID and node name into this Target Authentication
Block. Your program can use this authentication information to confirm that you have
e s t a b l i s h e d a s e s s i o n w i t h t h e c o r r e c t r e c i p i e n t . ^ _ ^

response
OUTPUT. A code indicating the status of the session. ISC sets this response code only when
ISSGRS completes successfully, as indicated by the code parameter. The possible PL/I values
for response are:

ISC_RC$Accepted
The recipient accepted your session request; the session is fully established.

ISC_RC$ServerTerminate
The recipient did not accept your session request. Instead, the recipient responded with a
Terminate Session operation. The recipient may have supplied further information in the
message pointed to by connectmessage.

ISC_RC$SystemTerminate
The system was unable to establish the session because the recipient you requested is
inaccessible. For example, the recipient server may have exceeded its maximum number
of concurrent sessions.

8 - 1 2 F i r s t E d i t i o n

Establishing a Session
ISSGRS

FTN values for response are listed in Appendix C.

connectmessage
INPUT —» OUTPUT. Either specify a null value or supply a pointer to a Message Specifier in
your program. ISC uses this pointer to copy a Connect message sent by the session recipient
into a message array in your program. This Connect message could have been sent by either
an accept session (ISSAS) or terminate session (ISSTS) operation. A null value does not
receive a Connect message. The Message Specifier structure is described in Chapter 10.
Connect messages are further described in Chapter 12.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. The status of the session is indicated by the
response parameter.

ISC_SC$LongMessage
The operation completed successfully. However, the allocated message array was too
small for the Connect message returned by this operation. The Connect message has
therefore been truncated.

ISC_SC$NothingYet
No response to the session request has arrived.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$Established
You have already performed an ISSGRS operation for this session; the current operation
is therefore ignored.

ISC_SC$BadVersion
You have specified an invalid version number in one of the structures used by this
subroutine.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

F i r s t E d i t i o n 8 - 1 3

Subroutines Reference V: Event Synchronization

ISSGRS

Discussion

When the session recipient responds to a session request, ISC posts a notice on the initiator's
SessionResponsePending synchronizer. The posting of a notice on this synchronizer informs the
initiator to call ISSGRS. This synchronizer is further described in Chapter 9. Subroutines for
retrieving notices from a synchronizer are described in Chapters 2 and 3; use the subroutines
described in Chapter 3 if the synchronizer is a member of an event group.
The initiator calls ISSGRS to determine the outcome of its session request. Upon successful
completion, ISSGRS returns a response code that indicates the status of the session request. This
response code indicates whether the session has been accepted or terminated. These response
codes are located in the ISC_.KEYS.INS include file for your programming language. The
response code values for different languages are listed in Appendix C.
Upon successful completion, ISSGRS returns information about the session recipient. If the
session request has been accepted, the Target Authentication Block information returned by this
subroutine can be used to confirm that you have established this session with the intended
recipient. Target Authentication Block information is also returned if the other server rejected
the session request. The Target Authentication Block has the following format:

del 1 TargetAuthBlock,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 UserlD char(32) var;

The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

NodeName
The PRIMENET node name that identifies the system that is running the session recipient.

UserlD
The user ID of the session recipient. If you are establishing a session with a remote node, this
field may contain a remote ID or may be blank. Refer to Chapter 13 for details.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

8 - 1 4 F i r s t E d i t i o n

Session Configuration

Introduction
When you request a session using ISSRS, you establish a set of configuration parameters for
that session. You can either accept the default configuration parameter values or set your own
parameter values. If you want to change any of the session's parameters, you must specify your
own parameter values for all of the session's parameters. This chapter describes how to set
session parameter values, and how to use the synchronizers established during session
configuration.
Session parameters are divided into two groups, global parameters and local parameters.
Global session parameters are set by the session initiator (using ISSRS) to govern both sides of
the session. For example, the number of message queues must be the same for the servers on
both sides of the session. Local session parameters are set by each server to govern only its side
of the session. For example, each server can specify which synchronizers it wishes to use to
coordinate the sending and receiving of session messages. Either server can choose default
values or specify nondefault values for its own local parameters, regardless of the choice made
by the other server. The initiator establishes local parameters using ISSRS; the session recipient
establishes local parameters using ISSAS.

The Default Session Configuration
To establish session configuration parameters with default values, you make the config pointer
in ISSRS or ISSAS a null pointer. ISC automatically supplies a full set of default configuration
values to the session. The Session Configuration Block in your program (if present) is ignored.
ISC establishes the following session configuration as a default:

• Full support for Normal messages with a maximum data part length of 2048 bytes
and a maximum control part length of 128 bytes.

• No support for Expedited messages.
• Send and receive queues with a length of 7, no queue thresholds, and ReadyToSend

and ReadyToReceive synchronizers to inform you of the status of these queues.
• A SessionResponsePending synchronizer for the session initiator to inform it that the

session recipient has responded to the session request.

F i r s t E d i t i o n 9 - 1

Subroutines Reference V: Event Synchronization

• An ExceptionPending synchronizer to inform you that an exception has occurred.

A program example that uses the default session configuration is shown in Appendix B.

The Session Configuration Block
To establish session configuration parameters with nondefault values, you set the config pointer
in ISSRS or ISSAS to point to a Session Configuration Block in your program. This block has
the following format:

9-2

del 1 SessionConfigurationBlock,
2 V e r s i o n fi x e d b i n (1 5) , / * local */
2 Sessions er vices,

3 N o r m a l S e r v i c e b i t (l) , 1 * global */
3 E x p e d i t e d S e r v i c e b i t (l) , 1'* global */
3 SyncsToBeUsed,

4 R e a d y T o S e n d b i t (l) , l'* local */
4 ReadyToSendExpedited bit(l), /'* local */
4 R e a d y To R e c e i v e b i t (l) , /r* local */
4 ReadyToReceiveExpedited bit(l), /'* local */
4 B u f f e r Av a i l a b l e b i t (l) , t'* local */
4 SessionResponsePending bit(l), i<* local */
4 Excep t i onPend ing b i t (l) , i'* local */

3 R e s e r v e d b i t (7) , i'* local */
2 QueueLengths,

3 NormalSend fixed bin(15), /'* global */
3 NormalReceive fixed bin(15), '* global */
3 ExpeditedSend fixed bin(15), if* global */
3 ExpeditedReceive fixed bin(15), /f* global */

2 QueueThresholds,
3 NormalSend fixed bin(15), f* local */
3 NormalReceive fixed bin(15), (* local */
3 ExpeditedSend fixed bin(15), f* local */
3 ExpeditedReceive fixed bin(15), i'* local */

2 MaxControlLength fixed bin(15), '* global */
2 MaxDataLength fixed bin(15), iI* global */
2 MaxExpeditedLength fixed bin(15), I* global */
2 ExistingSessionID fixed bin (15), if* local */
2 MessageArea,

3 B l o c k S i z e fi x e d b i n (1 5) , i'* global */
3 NumberOfBlocks fixed bin(15), i'* global */
3 R e s e r v e d fi x e d b i n (1 5) ; i'* global */

First Edition

Session Configuration

You can automatically include a template for this structure in your program by using the
SYSCOM>ISC_STRUCTURES.INS include file appropriate for your programming language, as
described in Chapter 6. Note that if you establish a pointer to a Session Configuration Block,
rather than taking default values, you must supply appropriate values for all of the parameters in
that Session Configuration Block, including those that you wish to set to default values.
You must specify constant values for certain parameters of the Session Configuration Block.
These parameters are the Version and Reserved parameters.

Version
The version number for this structure. You must set this parameter both when using the
structure to configure parameters and when using the structure to receive information from
ISC. Use the ISC_VERSION_NUMBER to set this field. ISC_VERSION_NUMBER is
supplied in the ISC_STRUCTURES.INS include files.

Reserved
There are two reserved parameters, a local parameter, SessionServices.Reserved, and a global
parameter, MessageArea.Reserved. These parameters are reserved for system use. If a
nondefault configuration is used, the session initiator must set both reserved parameters to
zeros and the session recipient must set the local reserved parameter to zero.

During session establishment, the Session Configuration Block is used as follows:
• The session initiator calls ISSRS to request a session. It can either use a Session

Configuration Block to specify values for all global and local parameters or take the
configuration default.

• The session recipient calls ISSGRQ to get the session request. It can use a Session
Configuration Block to see what global parameters have been requested. ISSGRQ
does not copy local configuration parameters into the structure.

• The session recipient calls ISSAS to accept the session. It can either use a Session
Configuration Block to specify values for all of its local parameters or take the
configuration default. ISSAS does not read global parameter values from the
structure.

Global Session Parameters
Configuration parameters that are set to the same value for both the session initiator and
recipient are referred to as global parameters. Servers use the Session Configuration Block to set
both global configuration parameters and local configuration parameters. Global parameter
values are set by the session initiator as part of the request session operation (ISSRS). ISC
ignores any global parameter values specified by the session recipient.

F i r s t E d i t i o n 9 - 3

Subroutines Reference V: Event Synchronization

Global parameters specify the types and sizes of message queues, the space allocation for
message buffers and the maximum sizes for messages. The following are global parameters:
NormalService

A logical value indicating whether or not Normal message service is to be provided on the
session. Normal message service provides for the exchange of long messages (called Normal
messages), which can consist of a control part and a data part, as described in Chapter 10.
Most users will want to configure their session for either Normal message service or Normal
message service and Expedited message service. Configuring neither Normal message service
nor Expedited message service establishes a session that does not support message exchange,
but it allows for the exchange of Connect messages during session establishment. Options for
configuring Normal message service are 1 (YES) and 0 (NO). Default is 1 (YES).

ExpeditedService
A logical value indicating whether or not Expedited message service is to be provided on the
session. Expedited message service provides for the exchange of short messages (called
Expedited messages) on a queue separate from the Normal message queue. Options are 1
(YES) and 0 (NO). Default is 0 (NO).

QueueLengths
ISC establishes two queues for each service: a send and a receive queue for Normal messages
and a send and a receive queue for Expedited messages. Each QueueLengths parameter ^^
configures a matching set of send and receive queues. For example, when you specify a send
queue length, ISC configures a send queue of that length (or greater) for the session initiator
and a corresponding receive queue of the same length for the session recipient. You use the
QueueLengths parameters to specify the queue length (number of message slots) to allocate
for each of these queues. Values range from 0 through 31 message slots for Normal message
service, and 0 through 7 message slots for Expedited message service. If the session is not
configured for a service, or if you specify a queue length of 0 for one of the service's queues,
no queues for that service are allocated. The default queue length is 7 for all queues.

MaxControlLength
The maximum length for the control part of a Normal message. Valid only if you have
specified NormalService. An ISC Normal message can consist of two parts, a control part
and a data part. The length of a Normal message control part can range from 0 bytes through
128 bytes. The default is 128 bytes. You should define an array in your program that can
accommodate a control part of the specified size. This parameter does not govern the
maximum size of Expedited messages or Connect messages. The maximum size of an
Expedited message is specified in MaxExpeditedLength. The maximum size of a Connect
message is always 128 bytes.

MaxDataLength
The maximum length for the data part of a Normal message. Valid only if you have specified
NormalService. An ISC Normal message consists of two parts: a control part and a data part.
The length of the data part can range from 0 bytes through 32,630 bytes. A length of 0

9 - 4 F i r s t E d i t i o n

Session Configuration

prevents the allocation of the space specified in MessageArea. Set MaxDataLength either to
zero or to a multiple of the message area block size. A MaxDataLength value that is not a
block size multiple is automatically increased to the next block size multiple. The default is
2048 bytes.

MaxExpeditedLength
The maximum length for an Expedited message. Valid only if you have specified
ExpeditedService. The length of an Expedited message can range from 0 bytes through 64
bytes. The default is 64 bytes.

MessageArea
An area from which message buffers are allocated. These buffers are used for the data part of
Normal messages. You should specify a message area large enough to contain the data parts
of multiple messages. To specify a message area, you specify the block size and the number
of blocks. The block size can range from 128 bytes to 32,630 bytes. The maximum number
of blocks you can specify depends on the block size; the total message area may not exceed
262,144 bytes. The default is 100 blocks of 512 bytes each for a total message area of 51,200
bytes.

Local Session Parameters
Session configuration parameters that each server sets for its own use are referred to as local
parameters. Each server uses the Session Configuration Block to set its local configuration
parameters. The session initiator sets its local parameters as part of the request session operation
(ISSRS). The session recipient sets its local parameters as part of the accept session operation
(ISSAS). The session initiator also uses the Session Configuration Block to set global
configuration parameters; the session recipient cannot set global configuration parameters.
The local parameters consist of seven session synchronizers, four queue thresholds, and the
ExistingSessionlD. Servers must also set the Version and SessionServices.Reserved parameters
to constants when configuring local parameters. The following are the local parameters:

ReadyToSend
A logical value (0 or 1) indicating whether or not to allocate a ReadyToSend synchronizer to
this server for the duration of this session. This synchronizer informs the server that there is
space available on the Normal message send queue. A value of 1 allocates the synchronizer; a
value of 0 does not allocate the synchronizer. The default is 1.

Ready ToSendExpedited
A logical value (0 or 1) indicating whether or not to allocate a ReadyToSendExpedited
synchronizer to this server for the duration of this session. This synchronizer informs the
server that there is space available on the Expedited message send queue. A value of 1
allocates the synchronizer, a value of 0 does not allocate the synchronizer. The default is 0.

F i r s t E d i t i o n 9 - 5

Subroutines Reference V: Event Synchronization

ReadyToReceive
A logical value (0 or 1) indicating whether or not to allocate a ReadyToReceive synchronizer
to this server for the duration of this session. This synchronizer informs the server that a
message has arrived on the Normal message receive queue. A value of 1 allocates the
synchronizer; a value of 0 does not allocate the synchronizer. The default is 1.

ReadyToReceiveExpedited
A logical value (0 or 1) indicating whether or not to allocate a ReadyToReceiveExpedited
synchronizer to this server for the duration of this session. This synchronizer informs the
server that a message has arrived on the Expedited message receive queue. A value of 1
allocates the synchronizer, a value of 0 does not allocate the synchronizer. The default is 0.

Buffer Available
A logical value (0 or 1) indicating whether or not to allocate a Buf fer Available synchronizer
to this server for the duration of this session. This synchronizer informs the server that
message buffer space has become available. The BufferAvailable synchronizer is only
notified when space first becomes available after an allocate buffer (ISSAB) operation failed
for lack of available space. A value of 1 allocates the synchronizer; a value of 0 does not
allocate the synchronizer. The default is 0.

SessionResponsePending
A logical value (0 or 1) indicating whether or not to allocate a SessionResponsePending
synchronizer to this server. This synchronizer informs the session initiator that a response to
its session request has arrived. This synchronizer is therefore only meaningful for the server
that initiates the session. Session recipients cannot allocate this synchronizer; attempts to do
so are ignored. A value of 1 allocates the synchronizer; a value of 0 does not allocate the
synchronizer. The default is 1 for the initiator, 0 for the recipient.

ExceptionPending
A logical value (0 or 1) indicating whether or not to allocate an ExceptionPending
synchronizer to this server for the duration of this session. This synchronizer informs the
server that a session exception has occurred. If this synchronizer is not allocated, ISC posts
notices on the server's other synchronizers when a session exception occurs. A value of 1
allocates the synchronizer; a value of 0 does not allocate the synchronizer. The default is 1.

QueueThresholds
These parameters indicate the threshold values for the Normal message send, Expedited
message send, Normal message receive, and Expedited message receive queues. A queue
threshold defines what type of event causes ISC to post a notice on the corresponding
synchronizer. The threshold value specifies the number of messages (on a receive queue) or
available message slots (on a send queue) that is required to post a notice on the
corresponding synchronizer. If the threshold is 0, ISC posts a notice each time a message
appears on your receive queue or an available message slot appears on your send queue. If the
threshold is 1 or more, ISC posts a notice when the queue reaches the threshold number of
items. ISC posts a notice on the ReadyToReceive synchronizer when the number of pending

9 - 6 F i r s t E d i t i o n

Session Configuration

r

messages reaches the threshold number; it does not post notices for additional messages in
excess of the threshold number. ISC posts a notice on a ReadyToSend synchronizer when the
number of available message slots reaches the threshold number; it does not post notices for
additional message slots in excess of the threshold number. If thresholds are used, the usual
threshold value is 1 (ISC posts a notice only when the first message or message slot becomes
available), but values larger than 1 can be set when you wish to process messages in groups.
The minimum threshold value is 0 (threshold not used; ISC posts a notice every time a
message is added to the queue or a message slot becomes available); 0 is also the default
value. The maximum threshold value is the length of the corresponding queue (a global
configuration parameter).

ExistingSessionID
A session number of one of the initiator's existing sessions. If specified, ISC uses the
message area of the existing session for message buffering, rather than creating a new
message area. If 0, ISC creates a separate message area for the session. The default is 0. This
local parameter can only be specified by the session initiator. A session recipient cannot share
a message area; ISC ignores any attempt by the session recipient to set this parameter.

Configuring Synchronizers
Each server can configure up to seven ISC synchronizers for each session. These synchronizers
inform the server when a particular type of event occurs. For example, the ReadyToReceive
synchronizer notifies its server that there is a message available to be received.
Each server can configure its own ISC synchronizers as local parameters during session
establishment. Both servers have the option of selecting the default configuration. However, if a
server configures any global or local parameters, it must configure all of its parameters,
including its synchronizers and queue thresholds. The options for configuring synchronizers are
shown in Table 9-1.

F i r s t E d i t i o n 9 - 7

Subroutines Reference V: Event Synchronization

Table 9-1
Synchronizer Configuration

Synchronizer Global Parameters Default IfNot
Name Required Configuration Configured

ReadyToSend NormalService
QueueLengths.NormalSend > 0

allocated no notice

ReadyToSendExpedited ExpeditedService
QueueLengths.ExpeditedSend > 0

not allocated no notice

ReadyToReceive NormalService
QueueLengths .NormalReceive > 0

allocated no notice

ReadyToReceiveExpedited ExpeditedService
QueueLengths .ExpeditedReceive > 0

not allocated no notice

Buffer Available NormalService
MaxDataLength > 0
BlockSize > 0
NumberOfBlocks > 0

not allocated no notice

SessionResponsePending none allocated
for initiator

no notice

ExceptionPending none allocated notice posted
on all other
configured
synchronizers

The SessionRequestPending Synchronizer
In addition to the seven synchronizers configured as local parameters, PRIMOS automatically
provides every server with a SessionRequestPending synchronizer. This synchronizer informs
the server that another server has requested a session and is awaiting a response. You can
determine the identity of your SessionRequestPending synchronizer by using the SRSSGN
subroutine, described in Chapter 7. Terminating a session does not affect your
SessionRequestPending synchronizer. Logging out or issuing an ICE -SERVER command may
change the identity of your SessionRequestPending synchronizer.

Deleting Synchronizers
PRIMOS allocates ISC synchronizers for the duration of their useful life within a session. It
automatically destroys the SessionResponsePending synchronizer when you successfully call
ISSGRS to establish the session. It automatically destroys your other ISC session synchronizers
when you call ISSTS to terminate the session. You can destroy (or perform any other operation
on) non-ISC synchronizers without affecting the ISC session or its synchronizers. Although you
can destroy ISC synchronizers during a session, doing so produces unpredictable results and is

9-8 First Edition

Session Configuration

not recommended. PRIMOS destroys all of your synchronizers when your process is logged out
or when you issue an ICE -SERVER command. The ICE -SERVER command destroys and
recreates the SessionRequestPending synchronizer.

Unusable and Unused Synchronizers
If a server attempts to configure an ISC synchronizer which is not supported by the session
configuration, the ISSRS or ISSAS operation completes successfully, but the synchronizer is not
allocated. For example, if a server specifies a ReadyToSendExpedited synchronizer and the
global configuration parameters do not support Expedited messages, the synchronizer is not
allocated.
If a server configures an ISC synchronizer, it is expected to use that synchronizer. If the server
does not use the synchronizer, the number of unretrieved notices on the synchronizer may
increase until it reaches 32,767 notices. At that point the synchronizer is inactivated for the
duration of the session; you can retrieve notices, but no further notices are posted on that
synchronizer.

Session Synchronizers List
The subroutines that you use to configure your session synchronizers (ISSRS and ISSAS) return
the identifiers for the synchronizers that they configured. ISC writes these identifiers into the
Session Synchronizers List structure. This structure has the following format:

del 1 SessionSyncList,
2 Version fixed bin(15),
2 ReadyToSend fixed bin(15),
2 ReadyToSendExpedited fixed bin(15),
2 ReadyToReceive fixed bin(15),
2 ReadyToReceiveExpedited fixed bin(15),
2 BufferAvailable fixed bin(15),
2 SessionResponsePending fixed bin(15),
2 ExceptionPending fixed bin(15);

The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

Synchronizer Fields
ISC returns either a synchronizer identifier number or NullSyncNum to each of these seven
synchronizer fields. A synchronizer identifier is a system-generated number that uniquely
identifies a synchronizer for the duration of a session (or until the synchronizer is destroyed).

F i r s t E d i t i o n 9 - 9

Subroutines Reference V: Event Synchronization

A synchronizer identifier is unique within its server. Therefore, if a server participates in
multiple concurrent sessions, its identifiers for the synchronizers for each session are
different. Synchronizers are numbered from 1. A value of NullSyncNum indicates that the
synchronizer was not configured or has been destroyed.

Using Synchronizers
Upon the occurrence of an event, ISC posts a notice on the appropriate synchronizer. This notice
indicates that the event has occurred by incrementing the synchronizer's notice count; a notice
supplies no other information about the event. Retrieving a notice decrements the synchronizer's
notice count.

Retrieving a Notice
If a server wishes to wait for notification of an event, it can call SYNSWAIT for the
synchronizer associated with that event. SYNSWAIT causes the server to wait until ISC posts a
notice to that synchronizer, upon notification, the waiting server automatically retrieves the
notice and resumes processing. The server should then respond to the event.
If a server wishes to retrieve a notice when available, it can call SYNSRTRV. If a notice is
present, SYNSRTRV retrieves the notice and returns a code indicating that fact. The server
should then respond to the event. If no notice is present, SYNSRTRV returns a code indicating
that there was no notice to retrieve; the server can then proceed to perform other processing.
SYNSWAIT and SYNSRTRV are described in Chapter 2; SYNSGWT and SYNSGRTR, which
wait and retrieve on synchronizers in an event group, are described in Chapter 3.
For example, sending a message (using ISSSM) posts a notice on the other server's
ReadyToReceive synchronizer. If the other server is waiting on that synchronizer, that server
automatically retrieves the notice and resumes processing. When processing resumes, the next
line of code would ordinarily be a call to ISSRM to receive the message. If the server is not
waiting, it can call a subroutine to retrieve the notice. After the notice is retrieved, the server
receives the message by calling ISSRM. Table 9-2 shows the subroutine associated with each
synchronizer. It assumes default queue thresholds.

9 - 1 0 F i r s t E d i t i o n

Session Configuration

Table 9-2
Synchronizers and Subroutines

Get Notice on Then Execute
Synchronizer Subroutine
SessionRequestPending ISSGRQ
ReadyToSend ISSSM
ReadyToSendExpedited ISSSM
ReadyToReceive ISSRM
ReadyToReceiveExpedited ISSRM
BufferAvailable ISSAB
SessionResponsePending ISSGRS
ExceptionPending ISSGE

Retrieving a notice decrements the synchronizer's notice count. It is the programmer's
responsibility to maintain the accuracy of this notice count. Therefore, it is extremely important
that in every case a notice is retrieved before your program responds to the event that the notice
represents.

Using Queue Thresholds
You can use queue threshold values to coordinate notices retrieved and operations performed.
(Queue threshold values are set as local session parameters.) The two following examples
demonstrate the use of queue thresholds. The first example does not use a queue threshold (that
is, threshold = 0). The second example uses a queue threshold.

1. If there is no send queue threshold, the server waits on the ReadyToSend
synchronizer before sending each message. It then calls ISSSM to send the message.
This means that the server waits before each send operation. When there is an
available send queue slot, the wait ends immediately; when there is no available send
queue slot, the server waits until one becomes available. Each call to ISSSM sends a
message; a call to ISSSM should never fail with a NoRoom error.

2. If there is a send queue threshold of 1, the server calls ISSSM repeatedly to send
messages. When a call to ISSSM fails with a NoRoom error, the server waits on the
ReadyToSend synchronizer. It then calls ISSSM repeatedly to send messages until the
next NoRoom error. This means that the server only waits on the synchronizer when
no send queue slot is available; the wait ends when one becomes available. However,
sending a message sometimes requires two calls to ISSSM: a call that fails with a
NoRoom error, and a second call after waiting for a send queue slot.

First Edition 9-11

Subroutines Reference V: Event Synchronization

U s i n g E v e n t G r o u p s *
ISC synchronizers have all of the features of general-purpose synchronizers, as described in
Chapters 2 and 3. Therefore, you can perform waits and timed waits on ISC synchronizers and
group ISC synchronizers into event groups.
If a server wishes to wait for any of a number of ISC events, it can create an event group (using
SYNSGCRE), move several of its synchronizers into the event group (using SYNSMVTO) and
then wait for a notice to be posted on any of these synchronizers (using SYNSGWT). The
synchronizers in an event group may belong to different sessions. For example, the server may
place the ReadyToReceive synchronizers for all of its sessions into a single event group.
Another example would be to place the ReadyToReceive and ReadyToReceiveExpedited
synchronizers for a session in an event group and give priority to Expedited messages. Event
groups are described in Chapter 3.

Note
Synchronizers placed in an event group are each provided with a For
Client Use field. This For Client Use field is 3 16-bit halfwords in
length. You can use this field to identify the session and synchronizer
type for each synchronizer in the group, or to provide a pointer to an
area containing additional information about the synchronizer. The
For Client Use field is deleted when you remove the synchronizer
from the event group.

You can create additional non-ISC synchronizers during a session by using the synchronizer
subroutines described in Chapter 2. You can group ISC synchronizers and non-ISC
synchronizers together in the same event group.

" >

9 - 1 2 F i r s t E d i t i o n

10

Message Exchange

r

r
r

Introduction
Once you have established an ISC session, the two servers can exchange messages. Each server
can both send and receive messages, and there is no limit to the number of messages that can be
sent during a session. You send a message using ISSSM; the other server in the session receives
the message using ISSRM. Both servers can send and receive messages simultaneously.

Message exchange can involve Normal messages and Expedited messages. During session
establishment, the session initiator configures which of these types of messages will be
available. Each type of message has its own queues. If both message types are available, it is
recommended that you receive messages from the Expedited message queue before receiving
Normal messages.

During message exchange, the following events occur:
• You create the message. If the message has a control part, you write the control part

message in an array in your program. If the message has a data part, you allocate a
buffer in the session's message area (using ISSAB), then write the data part of the
message into the buffer. You then specify the array and/or buffer in a Message
Specifier structure. To send the message, you retrieve a notice from your
ReadyToSend synchronizer. This notice indicates that there is available space on your
send queue. You then call ISSSM to send the message, specifying the location of the
Message Specifier structure.

• When you send a message, ISC posts a notice on the other server's ReadyToReceive
synchronizer. This informs the other server that a message is ready to be received.
The other server must perform two operations: first retrieve the notice from the
synchronizer, then call ISSRM to receive the message.

• When you send a message, ISC copies the contents of your control part message array
(if present) into a temporary system area. When the other server receives the message,
ISC copies the control part of the message from the temporary system area into the
message array of the receiving server.

• When you send a message, ISC places location information for the data part message
(if present) on your send queue. When the other server receives the message, ISC uses
this location information to provide a pointer to the data part message in the
recipient's Message Specifier structure.

F i r s t E d i t i o n 1 0 - 1

Subroutines Reference V: Event Synchronization

• After receiving a message that has a data part, the message recipient can free the
message buffer (using ISSFB), or it can reuse the message buffer by writing another
message into the buffer and sending that message.

(This listing of events assumes a default session configuration: ReadyToReceive and
ReadyToSend synchronizers allocated and no queue thresholds configured. The uses of notices
on these synchronizers may differ if you have established queue thresholds. Queue thresholds
are described in Chapter 9.)

The size of send and receive queues is established as a global session parameter. The status of
these queues is represented by the number of notices posted on synchronizers. Notices posted on
a ReadyToReceive synchronizer indicate messages pending on the corresponding receive queue.
Notices posted on a ReadyToSend synchronizer indicate available space for sending messages
on the corresponding send queue. If no queue thresholds are configured, each notice indicates a
single pending message or available message slot. If queue thresholds are configured, a notice
indicates a specific number of pending messages or available message slots has been reached.
Refer to Chapter 9 for details.
When either server wishes to end the session, the server issues a terminate session operation.
This appears as an exception at the other server, informing it of the termination operation.
Session termination and exception processing are described in Chapter 11.

Message Exchange Subroutines
Table 10-1 lists the subroutines that allocate and free message buffers and send and receive
messages.

Table 10-1
ISC Message Exchange Subroutines

Name Function

ISSAB Allocates a buffer for a message data part

ISSFB Frees an allocated data part buffer

ISSSM Sends a message

ISSRM Receives a message

10-2 First Edition

Message Exchange

Creating a Message
Every program that sends or receives a message must contain a Message Specifier. A Message
Specifier is a structure that contains the length and location of your message text. You declare a
Message Specifier in your program as follows:

del 1 MessageSpecifier,
2 Version fixed bin(15),
2 Control,

3 SuppliedLength fixed bin(15),
3 ReturnedLength fixed bin(15),
3 BufferLocation ptr,

2 Data,
3 BufferLength fixed bin(15),
3 BufferLocation ptr;

You declare the Message Specifier in your program and supply the address of that Message
Specifier to the message or connectmessage parameter of the subroutine that sends or receives
the message. You can use the same Message Specifier for all messages sent or received by your
program, or declare multiple Message Specifiers.
Connect messages, Normal messages, and Expedited messages all use the same Message
Specifier structure. A Connect message (sent by ISSRS, ISSAS, or ISSTS) can consist of a
control part. A Normal message (sent by ISSSM) can consist of either a control part, a data part,
or both a control part and a data part. An Expedited message (sent by ISSSM) can consist of a
control part. You can send a null message (either Normal or Expedited) by either specifying a
null pointer in ISSSM instead a pointer to a Message Specifier, or specifying a pointer to a
Message Specifier and setting both of its BufferLocation pointers to null values.
A Message Specifier has the following fields:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

Control
Fields specifying the location and size of a control part message. The control part is a small
space allocation (0 to 128 bytes) that you establish as an array in your program. The session
initiator establishes the maximum length of the control part for Normal messages and the
maximum length of the control part for Expedited messages when requesting the session
using ISSRS. When sending or receiving a message, you must specify the actual length of
your message array in the SuppliedLength parameter and a pointer to your message array in
the BufferLocation parameter. When you receive a message, ISC writes the message into the
BufferLocation array and indicates the actual length of the message in ReturnedLength.

F i r s t E d i t i o n 1 0 - 3

Subroutines Reference V: Event Synchronization

Data
Fields specifying the location and size of a data part message. The data part is a large space
allocation (0 to 32,630 bytes) that you establish in your session's message area. The session
initiator establishes the maximum size of the data part and the total size of the message area
when requesting a session using ISSRS. Before sending a data part message, you must call
ISSAB to allocate a portion of your message area. ISSAB returns a pointer to a buffer for
your message. You use this pointer to write your message into the buffer, then copy this
pointer into the BufferLocation field of the Message Specifier. When sending a message,
you specify the actual length of the message's data part in BufferLength; when receiving a
message, ISC writes the length of the message's data part into BufferLength.

^ >

^

1 0 - 4 F i r s t E d i t i o n

Message Exchange
ISSAB

\

IS$AB
Allocates a buffer for the data area of a message. Used by either server.

Usage

DCL ISSAB ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15))
RETURNS (PTR OPTIONS(SHORT));

buffer = IS$AB (number, length, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

length
INPUT. The length in bytes of the buffer required. Valid lengths are 0 to 32630 bytes. The
buffer you allocate should be some multiple of the length of your message area blocks. A
length that is not a multiple of the block length is automatically increased to a block length
multiple. If you specify a length of zero, this subroutine returns a null pointer.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. A buffer of the specified size has been allocated.

ISC_SC$BadSize
The buffer size that you specified is not a valid value.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$NoMessageArea
The session number you specified does not have an associated message area.

ISC_SC$NoRoom
There is not enough room in the session's message area to allocate this buffer request.
When space becomes available, ISC will notify your BufferAvailable synchronizer (if
configured).

F i r s t E d i t i o n 1 0 - 5

Subroutines Reference V: Event Synchronization

ISSAB

ISC_SC$NotEstablished
The session number you specified refers to a session that is not yet fully established.

ISC_SC$Exception
A session exception has occurred. You cannot allocate a buffer until you have cleared
the session exception. Exception processing is discussed in Chapter 11.

ISC_SC$Terminated
You cannot allocate a buffer because the session has already been terminated.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

buffer
RETURNED VALUE. A pointer to the allocated buffer. This pointer is two 16-bit halfwords
in length. Copy this pointer into the Data.BufferLocation field of a Message Specifier in
your program and use this pointer to write the text of your message into the buffer.

Discussion

ISSAB allocates a message buffer in the session's message area. You must get a message buffer
before sending a message that contains a data part. Only Normal messages can contain a data
part. Connect messages and Expedited messages do not have a data part and therefore do not
require a buffer allocation. You can get a message buffer either by allocating it (using ISSAB)
or by reusing a message buffer that you received (via ISSRM) but did not free.
The actual size of the buffer allocated is always either zero (no buffer allocated), or some
multiple of the message area block size. The message area block size is a global configuration
parameter. If you specify a buffer size that is not a multiple of the block size, ISC increases
your allocation to the next whole block size.
This subroutine returns a pointer to the allocated buffer. Use this pointer to write the data part of
your message into the buffer. When sending the message, place this pointer value in the
Data.BufferLocation field of your Message Specifier.
A call to ISSAB may not be able to allocate a buffer due to the lack of available space in the
message area. After this type of buffer allocation failure, ISC posts a notice on the server's
BufferAvailable synchronizer when more message area space becomes available. This notice
only indicates that buffer space is now available; it does not guarantee that the available space is
large enough to allocate the desired buffer. The default configuration does not include the
BufferAvailable synchronizer. If no ExceptionPending synchronizer is configured, the
occurrence of an exception posts a notice on all of your configured synchronizers, including the
BufferAvailable synchronizer.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

1 0 - 6 F i r s t E d i t i o n

Message Exchange
ISSFB

r

IS$FB
Frees an allocated message buffer in the session's message area.

Usage

DCL ISSFB ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), FIXED BIN(15));

CALL ISSFB (number, buffer, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

buffer
INPUT. A pointer to the buffer to be freed. Supply the Data.BufferLocation pointer value
from the Message Specifier. This pointer value was supplied to the Message Specifier by the
receive message (ISSRM) operation.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. The buffer has been freed.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$NoMessageArea
The session number you specified does not have an associated message area.

ISC_SC$BadBuffer
The buffer parameter does not point to a buffer owned by this session.

ISC_SC$NotEstablished
The session number you specified refers to a session that is not yet fully established.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

F i r s t E d i t i o n 1 0 - 7

Subroutines Reference V: Event Synchronization

ISSFB

Discussion

ISSFB frees a message buffer in the session's message area. A message buffer is allocated using
ISSAB.
Sending a message transfers ownership of the message buffer. Only the server receiving a
message can free the message buffer for a sent message. However, a server writing a message
can use ISSFB to free a message buffer of an unsent message rather than sending the message.
A server that has received a message buffer has the choice of either freeing the message buffer
or reusing the message buffer to send a message. A server can reuse a buffer to send a message
back to the the other server in the session or to send a message in another session that shares the
same message area.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.
" >

1 0 - 8 F i r s t E d i t i o n

Message Exchange

ISSSM

IS$SM
Sends a message to the other server. Used by either server.

Usage
DCL ISSSM ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), BIT(l) ALIGNED,

FIXED BIN(15));

CALL IS$SM (number, message, queue, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

message
INPUT. A pointer to a Message Specifier in your program. The Message Specifier contains
message length information and pointers to the locations that contain the actual message. If
you specify a null value for this pointer, ISC sends a null message.

queue
INPUT. A logical value (0 or 1) indicating whether or not to send the message on the
Expedited message queue. A value of 0 sends a message on the Normal message queue; a
value of 1 sends a message on the Expedited message queue.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. The message has been sent.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$NotEstablished
The session number you specified refers to a session that is not yet fully established.

ISC_SC$NoQueue
A message of the specified type (Normal or Expedited) cannot be sent because no queue
has been established for that type of message.

F i r s t E d i t i o n 1 0 - 9

Subroutines Reference V: Event Synchronization

ISSSM

ISC_SC$NoRoom
A message of the specified type (Normal or Expedited) cannot be sent because the send
queue for messages of that type is full. You can wait on the appropriate ReadyToSend
synchronizer (if configured) until space is available on the queue. The ReadyToSend
synchronizers are described in Chapter 9.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$Exception
A session exception has occurred. You cannot send a message until you have cleared the
session exception.

ISC_SC$Terminated
You cannot send a message on this session because the session has already been
terminated, either by the other server or by ISC.

ISC_SC$BadVersion
You have specified an invalid version number in the Message Specifier.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSSM sends a message from one server in a session to the other server. The message can be
either a Normal message or an Expedited message. This subroutine can be used by either server.
The other server issues an ISSRM subroutine to receive the message.
Either server can be the first to send a message once the session has been established. The
session recipient can send a message immediately after calling an accept session operation
(ISSAS); it does not have to wait for the initiator to get the session response (using ISSGRS).
The initiator can send a message after calling ISSGRS.
You can send a message as either a Normal message or an Expedited message (if the session is
configured to support these two types of messages). ISSSM sends Normal messages and
Expedited messages on separate queues. These two types of messages are also received on
separate queues. Therefore, the other server can receive all of your pending Expedited messages
before receiving your Normal messages. This is a useful method for bringing a message to the
other server's immediate attention.
To send a message, you specify a pointer to the Message Specifier. The Message Specifier
contains the lengths of message buffers and pointers to the control part and the data part of the
message. A Normal message can consist of a control part, a data part, both a control part and a
data part, or can be a null message containing neither a control part nor a data part. An expedited
message can consist of a control part or can be a null message.

1 0 - 1 0 F i r s t E d i t i o n

Message Exchange
ISSSM

You can synchronize the execution of two servers by sending null messages. The Message
Specifier for a null message contains null pointers for both the control part and the data part. If
no threshold is configured for the receive queue, sending a null message posts a notice on the
other server's ReadyToReceive synchronizer.
ISC posts notices on the ReadyToSend and ReadyToSendExpedited synchronizers (if
configured) when space becomes available on your send queues. You should retrieve notices
from these synchronizers before you use send queue space. Sending a message (of any type or
length) occupies one space on a send queue. If the queue has no queue threshold (the default
configuration), you should retrieve a notice from the appropriate ReadyToSend synchronizer and
then send the message. You can retrieve a notice by either calling SYNSRTRV for that
synchronizer or by waiting on the synchronizer. If the queue has a threshold, you should send
messages without retrieving notices until a send operation fails for lack of send queue space.
You then wait for ISC to post a notice on the synchronizer, retrieve the notice, and continue
sending messages. These options are described in greater detail later in this chapter. It is the
programmer's responsibility to maintain the ReadyToSend synchronizers by retrieving a notice
(when necessary) before sending a message. These synchronizers and queue thresholds are
described in Chapter 9.
Each message that you send occupies one space on your send queue. ISC automatically frees
spaces on your send queue as the messages you sent are processed. The number of notices
posted on the ReadyToSend synchronizers indicates the availability of space on your send
queue. Do not interpret the posting of a notice on a ReadyToSend synchronizer as an indication
of the status of a previously sent message.

Attempting to send more messages than the number of available spaces on your send queue
results in a NoRoom error. If no space is available on your send queue, one possible explanation
is that the other server has failed to receive your previous messages. In this case, you must wait
until the other server receives one of its pending messages before sending another message on
that queue.
After sending a control part message, you can immediately modify or delete your control part
message array. You do not have to wait until the other server has received the message. After
sending a data part message, you cannot delete your data part message buffer, only the message
recipient can free the buffer. After sending a data part, reading or modifying the data part buffer
can cause unexpected results and is not recommended.
If the session is configured without an ExceptionPending synchronizer, a notice is posted to
your ReadyToSend synchronizers) when an exception occurs. The code parameter of ISSSM
indicates whether an exception has occurred. Exceptions are further described in Chapter 11.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

F i r s t E d i t i o n 1 0 - 1 1

Subroutines Reference V: Event Synchronization

ISSRM

IS$RM
Receives a message. Used by either server.

Usage

DCL ISSRM ENTRY (FIXED BINQ5), PTR OPTIONS(SHORT), BIT(l) ALIGNED,
FIXED BIN(15));

CALL IS$RM (number, message, queue, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

message
INPUT -> OUTPUT. A pointer to a Message Specifier. You supply a pointer to a Message
Specifier in your program. ISC uses the Control.BufferLocation field of the Message
Specifier to locate the control part message array and writes the control part of the message
into that array. ISC also modifies the parameter values of the Message Specifier. Upon
successful completion, the Message Specifier contains the lengths of the message's control
and data parts, and pointers to the locations of these parts.

queue
INPUT. A logical value (0 or 1) indicating the queue from which you wish to receive a
message. A value of 0 receives a message from the Normal message queue; a value of 1
receives a message from the Expedited message queue. The default is 0.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. A message of the specified type has been
received.

ISC_SC$LongMessage
A message has been successfully received. However, the length of the control part of
the message exceeds the available message array. The control portion of the message has
therefore been truncated.

ISC_SC$NothingYet
No message of the specified type has arrived. This code only tells you about the
message type you specified (Normal or Expedited).

1 0 - 1 2 F i r s t E d i t i o n

Message Exchange

r
r

ISSRM

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$NotEstablished
The session number you specified refers to a session that is not yet fully established.

ISC_SC$NoQueue
Messages of the specified type (Normal or Expedited) cannot be received because no
queue was configured for that type of message. Queues are configured by the session
initiator using ISSRS.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$Exception
A session exception has occurred. You cannot receive a message until you have cleared
the session exception.

ISC_SC$Terminated
You cannot receive a message on this session because the session has already been
terminated, and all message queues are empty.

ISC_SC$BadVersion
You have specified an invalid version number in your Message Specifier.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSRM receives a message from the other server in the specified session. The message received
by this subroutine was sent by the other server using ISSSM; the message can be either a
Normal message or an Expedited message. Each time you call ISSRM, you must specify
whether you wish to receive a Normal message or an Expedited message.
ISC posts notices on your ReadyToReceive and ReadyToReceiveExpedited synchronizers (if
configured) when messages are pending on your receive queues. A message (of any type or
length) occupies one space on a receive queue.
ISC posts a notice on your ReadyToReceive synchronizer when a Normal message is ready to be
received. Retrieve the notice, then issue a call to ISSRM and specify a value of 0 for the queue
parameter.
If the session is configured for Expedited messages, ISC posts a notice on your
ReadyToReceiveExpedited synchronizer when an Expedited message is ready to be received.

F i r s t E d i t i o n 1 0 - 1 3

Subroutines Reference V: Event Synchronization

ISSRM

Retrieve the notice, then issue a call to ISSRM and specify a value of 1 for the queue parameter.
If the receive queue has no queue threshold (the default configuration), ISC posts a notice for
each pending message. You should retrieve a notice from the appropriate ReadyToRetrieve
synchronizer and then receive the message. You can retrieve a notice by either calling
SYNSRTRV for that synchronizer or by waiting on the synchronizer.
If the queue has a threshold, the notice informs you that the threshold number of messages are
pending on the receive queue. You should retrieve the notice, then receive all of the messages
on the queue.
It is the programmer's responsibility to maintain the ReadyToReceive synchronizers by
retrieving a notice (when necessary) before receiving a message. These synchronizers and queue
thresholds are described in Chapter 9.
When there are messages of both types waiting to be received, you should receive all Expedited
messages before receiving Normal messages. You can easily perform this task if you have
placed the ReadyToReceive and the ReadyToReceiveExpedited synchronizers in an event group
and given the ReadyToReceiveExpedited synchronizer a higher priority. These ISC
synchronizers are further described in Chapter 9; retrieving a notice from a synchronizer is
described in Chapter 2; event groups are described in Chapter 3.
If the session is configured without an ExceptionPending synchronizer, a notice is posted to
your ReadyToReceive synchronizers) when an exception occurs. The code parameter of ISSRM
indicates whether an exception has occurred. Exceptions are further described in Chapter 11.
If the session is configured without the ReadyToReceive synchronizer(s), you can still use
ISSRM to receive messages. If a message is pending, ISSRM receives the message; if no
message is pending ISSRM returns a code parameter value of ISC_SC$NothingYet. You should
receive all Expedited messages before receiving Normal messages.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

1 0 - 1 4 F i r s t E d i t i o n

11

Session Termination and Exceptions

Introduction
When either server wishes to end the message exchange session, that server calls ISSTS to
terminate its side of the session. The other server receives this termination operation as an
exception. The server that receives the exception can either immediately terminate its side of the
session or clear the exception and continue processing. When all processing is done, the
remaining server should also call ISSTS to terminate its side of the session.
This chapter describes how to terminate a session and how to analyze and clear an exception. An
exception can occur when the other server terminates its side of the session, when the system
terminates the session, or when a network transmission failure occurs.
An exception prevents a server from proceeding with that session until the exception is cleared.
ISC indicates that an exception has occurred by posting a notice on the server's
ExceptionPending synchronizer. If the server attempts to perform an ISC operation while an
exception is pending, the operation returns an exception status code.
To respond to an exception, you first call ISSGE to get the exception (determine its nature) and
then call ISSCE to clear the exception. If the exception did not terminate the other server's side
of the session, you can clear the exception and proceed with ISC message exchange. If the
exception describes a condition that terminated the other server's side of the session, you cannot
send any further messages to that server. After clearing an exception, the remaining server can
continue to read messages waiting on its receive queues. After reading all queued messages, the
remaining server must also call ISSTS to complete session termination.

Termination Subroutines
Table 11-1 lists the subroutines that terminate a session and respond to an exception.

Table 11-1
Termination Subroutines

N a m e F u n c t i o n
ISSTS Terminates the caller's side of a session
ISSGE Gets an exception
ISSCE Clears an exception

F i r s t E d i t i o n H _ 1

Subroutines Reference V: Event Synchronization

The ExceptionPending Synchronizer
ISC provides an optional ExceptionPending synchronizer that permits you to determine if an
exception has occurred. If you configured your session with an ExceptionPending synchronizer,
an exception posts a notice upon that synchronizer. Other synchronizers are not affected. If,
however, you do not have an ExceptionPending synchronizer, ISC treats the exception as an
ordinary event and posts a notice to all of your existing ISC synchronizers (except the
SessionRequestPending synchronizer). In this case, the number of notices on each synchronizer
appears to be incremented by one, due to the exception being posted as an event.
It is suggested that you place your ExceptionPending synchronizer in an event group with other
ISC synchronizers for that session and give ExceptionPending a higher priority. Event groups
are described in Chapter 3.

N̂

1 1 _ 2 F i r s t E d i t i o n

Session Termination and Exceptions

ISSTS

IS$TS
Terminates an ISC session or halts the process of session establishment. Used by
either server.

Usage

DCL ISSTS ENTRY (FIXED BIN(15), FIXED BIN(15), PTR OPTIONS(SHORT),
FIXED BIN(15));

CALL IS$TS (number, reserved, connectmessage, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

reserved
A field reserved for system use. Its value is ignored.

co n n ect message
INPUT. Either supply a null value or specify a pointer to a Message Specifier in your
program. If specified, this parameter sends a brief Connect message to the other server as part
of session termination. A null value does not send a Connect message. The Message Specifier
structure is described in Chapter 10. Connect messages are further described in Chapter 12.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. The session has been terminated.

ISC_SC$NoRoom
The terminate message cannot be sent due to system limitations.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$BadVersion
You have specified an invalid version number in your Message Specifier.

F i r s t E d i t i o n 1 1 - 3

Subroutines Reference V: Event Synchronization

IS$TS

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSTS terminates an ISC session. It can be issued at any time by either server participating in the
session. You can use ISSTS to terminate a session during session establishment or during
message exchange. This subroutine must be called by both servers to fully terminate a session.
To terminate a session during session establishment, the session recipient can issue a Terminate
Session (ISSTS), rather than an Accept Session (ISSAS) subroutine call. When the session
initiator calls ISSGRS, the subroutine indicates that the session has been terminated and returns
the ISSTS Connect message. The session initiator can also call ISSTS to terminate a session at
any point during session establishment.
When you terminate an established session, ISC posts a notice on the other server's
ExceptionPending synchronizer. The other server must call ISSGE to get this exception, then call
ISSCE to clear the exception before it can proceed to read messages remaining on the receive
queues. The other server receives the ISSTS Connect message when it calls ISSGE to get the
exception. After a server calls ISSTS, it can neither send nor receive further messages. The other
server participating in the session can continue to receive messages that are waiting on its
receive message queues.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

1 1 - 4 F i r s t E d i t i o n

Session Termination and Exceptions

r ISSGE

ISSGE
Gets an exception. Used by either server.

Usage:

DCL ISSGE ENTRY (FIXED BIN(15), FIXED BINQ5), PTR OPTIONS(SHORT),
FIXED BIN(15));

CALL ISSGE (number, exception, connectmessage, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

exception
OUTPUT. A code indicating the type of exception that occurred. This code is only set upon
successful completion of this subroutine call. Possible values are:

ISC_EX$DeliveryFailure
Possible data loss. You may continue the session and request that the message (or
messages) be sent again. This exception is caused by a network failure during a remote
ISC session. Refer to Chapter 13 for further details.

ISC_EX$ServerTerminate
This session has been terminated by the other server.

ISC_EX$SystemTerminate
This session has been terminated by the system.

connectmessage
INPUT —> OUTPUT. A pointer to the Connect message sent by the session terminator. You
supply either a null value or a pointer to a Message Specifier. ISC uses the pointer you
supplied to copy the Connect message into your message array. The Message Specifier
structure is described in Chapter 10. Connect messages are further described in Chapter 12.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully. The exception parameter indicates the type of
exception received.

F i r s t E d i t i o n 1 1 - 5

Subroutines Reference V: Event Synchronization

ISSGE

ISC_SC$LongMessage
An exception has been successfully received. However, the length of the Connect
message exceeds the length of the message array. This message has therefore been
truncated.

ISC_SC$NothingYet
No exception is pending on this session.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$Terminated
You cannot receive an exception on this session because the session has already received
a termination exception.

ISC_SC$BadMessage
The Message Specifier is invalid.

ISC_SC$NotEstablished
The session number you specified refers to a session that is not yet fully established.

ISC_SC$BadVersion
You have specified an invalid version number in your Message Specifier.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSGE gets an exception that is pending for the current session. You perform this operation after
receiving a notice on your ExceptionPending synchronizer or receiving a status code of
ISC_SC$Exception from a Send Message (ISSSM), Receive Message (ISSRM), or Allocate
Buffer (ISSAB) subroutine call. Before you can successfully perform any of these operations,
you get the exception, using this subroutine, and then you must clear the exception, using
ISSCE.
If the exception is a ServerTerminate, ISSGE can receive the Connect message sent by the other
server. No Connect message is returned for SystemTerminate or Deli very Failure exceptions.

Getting an exception enables you to determine the type of exception that occurred. It is possible,
though not generally advisable, to use ISSCE to clear an exception without first using this
subroutine to get the exception. It is not necessary to either get or clear an exception if you plan
to immediately terminate the session.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

1 1 - 6 F i r s t E d i t i o n

Session Termination and Exceptions

ISSCE

IS$CE
Clears an exception. Used by either server.

Usage

DCL ISSCE ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL ISSCE (number, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$NothingYet
No pending exception currently exists.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$Terminated
You cannot clear an exception on this session because you have already cleared a
termination exception.

ISC_SC$NotEstablished
The session number you specified refers to a session that is not yet fully established.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

F i r s t E d i t i o n 1 - j . 7

Subroutines Reference V: Event Synchronization

ISSCE

Discussion

ISSCE clears an exception that is pending for the current session. You perform this operation
after receiving a notice on your ExceptionPending synchronizer or receiving a status code of
ISC_SC$Exception from a Send Message (ISSSM), Receive Message (ISSRM), or Allocate
Buffer (ISSAB) subroutine call.

Normally, you first call ISSGE to get the exception, then call ISSCE to clear the exception.
Getting the exception enables you to determine the type of exception that occurred, and to
receive an optional termination message issued by the other server. It is possible, though not
generally advisable, to use ISSCE to clear an exception without first using ISSGE to get the
exception.
Effect ive for PRIMOS Rev. 22.0 and subsequent revisions. '^N

^

1 1 - 8 F i r s t E d i t i o n

12

Connect Messages

Introduction
ISC permits you to send and receive brief messages while establishing or terminating a session.
These messages are known as Connect messages. The following subroutines permit you to send
and receive Connect messages:

Sent By Received By
ISSRS ISSGRQ
ISSAS ISSGRS
ISSTS ISSGE or ISSGRS

In order to send or receive a Connect message, your program must contain a Message Specifier,
and the ControLBufferLocation field of that structure must contain a pointer to an array of a
maximum of 128 bytes. Refer to Chapter 10 for further details on how to include this structure
in your program.
To send a Connect message, you write the message into your array, put the actual length of the
message and pointer to the array in your Message Specifier, then specify a pointer to your
Message Specifier in the connectmessage parameter of the subroutine.
To receive a Connect message, you specify the location and length of a blank array in your
Message Specifier, and specify a pointer to your Message Specifier in the connectmessage
parameter of the subroutine. ISC copies the Connect message into your message array.
ISC copies a Connect message into a temporary buffer when you send the message, then copies
the Connect message from this temporary buffer when the other server receives the Connect
message. Therefore, you can send a Connect message and then delete or overwrite your message
array. You do not have to wait for the other server to receive the Connect message before
reusing the array.
Unlike Normal messages and Expedited messages, a delivery failure of a Connect message in an
ISSTS call is invisible. That is, when you issue an ISSTS call your session is ended. No
acknowledgment that the Connect message was successfully delivered can be returned. A
delivery failure can also delete Connect messages sent during session establishment.

F i r s t E d i t i o n 1 2 - 1

Subroutines Reference V: Event Synchronization

A Connect Message Exchange
You can use Connect messages for message exchange, rather than establishing a session and
exchanging Normal messages or Expedited messages. This strategy is useful if the two servers
only need to send one brief message apiece. A Connect message exchange is performed as
follows:

• A server sends a Connect message in ISSRS (Request Session).
• The other server responds by sending a Connect message in ISSTS (Terminate

Session), which also rejects the session request.

Connect message exchange does not require an established session, and therefore message
exchange can be performed with fewer preliminary steps. Connect message exchange does not
require the establishment of either Normal or Expedited message service, a message area,
queues, or synchronizers (except SessionResponsePending). It therefore requires fewer system
resources. However, if there is a possibility that the recipient server will not respond to the
session request by terminating (with ISSTS), but instead accept the session (with ISSAS), the
session initiator should configure the session's global parameters to enable the exchange of
Normal messages and/or Expedited messages.

12-2 First Edition

13

Remote Sessions

Introduction
You can establish a session with a server on the same node, or with a server on another node. A
session with a server located on another node is known as a remote session. You perform the
same ISC operations for local sessions and remote sessions; ISC automatically handles the
transmission of messages across the network.
The Low Level Name (LLN) that you use to identify the session recipient contains both the
server name and its node name. Each LLN is therefore unique throughout the network. When
specifying the LLN for a local session, you can specify the node name as null; when specifying
the LLN for a remote session, you must specify the name of the remote node.
ISC supports remote sessions through PRIMENET and an auxiliary process called the
ISC_.NETWORK_SERVER. Both of these facilities must be running on both nodes before you
can establish a remote session; neither of these facilities are required for ISC sessions between
servers on the same node. ISC uses the ISC_NETWORK_SERVER on each node as an
intermediary to handle PRIMENET communications. Under normal circumstances, this use of an
intermediary server is completely transparent to users of ISC. Establishing and maintaining the
ISC_NETWORK_SERVER is described in the Operator's Guide to Prime Networks.

Remote User ID
When you establish a session, ISC places the user ID of the other server in your authentication
block. For a local session, this value is always the user ID. The user ID value for a remote
server may be either that server's local ID on that node, a remote ID, or a null value.

• If the remote node does not force user validation, and the server has not established a
remote ID, your authentication block receives that server's local user ID, project ID,
and ACL group information.

• If the remote server has used the Add Remote ID (ARID) command to establish a
remote ID for the current node, your authentication block receives the remote ID
information that the server has established for your node. Refer to the User's Guide to
Prime Network Services for further details on the use of the ARID command.

F i r s t E d i t i o n 1 3 - 1

Subroutines Reference V: Event Synchronization

• If the Network Administrator has configured the remote node to force user validation,
and the remote server has not established a remote ID for your node, the
authentication block receives null values for the UserlD, ProjectID, and ACLGroups
fields. Your server must then decide whether or not to establish a session with this
anonymous server. Refer to the PRIMENET Planning and Configuration Guide for
further details on forcing user validation.

Network Events
ISC uses virtual circuits to connect the two PRIMENET nodes involved in a remote session. It
establishes a virtual circuit for Normal messages and, if required, a second virtual circuit for
Expedited messages. These two virtual circuits are coordinated so that if either one of them
becomes inoperable, ISC terminates the session, clearing both virtual circuits. These virtual
circuits can experience the following events:

Clear

If the virtual circuit is cleared, both servers receive a SystemTerminate exception. The servers
can clear this exception and continue to read previously queued messages, but no new messages
can be sent by either server. Each of the servers must call ISSTS to terminate the session.

Reset

If the virtual circuit is reset, a DeliveryFailure exception is posted to the server currently sending
a message. This exception indicates that one or more messages being transmitted may have been
lost. The server can clear this exception and retransmit the message(s). Programmers performing
ISC remote sessions should establish procedures for recognizing and recovering from data loss
following a DeliveryFailure exception. Resetting a virtual circuit does not otherwise affect the
contents of send and receive queues.

1 3 - 2 F i r s t E d i t i o n

14

Retrieving Session Information

Introduction
This chapter describes four subroutines that you can use to monitor ISC message exchange
sessions:

Table 14-1
ISC Monitoring Subroutines

Name Function
ISSGSO Gets sessions owned by your server
ISSGSA Gets session attributes
ISSGSS Gets session status
ISSSTA Gets statistics about a session

The ISSGSO subroutine can be called at any time; it returns the session numbers of the server's
active sessions (if any).
ISSGSA, ISSGSS and ISSSTA can be called during an active session. ISSGSA and ISSGSS can
also be called during session establishment; ISSSTA cannot be called until the session has been
fully established. All three of these subroutines can be called after the other server has
terminated, but not after your server has called ISSTS to terminate the session.

First Edition 14-1

Subroutines Reference V: Event Synchronization

ISSGSO

ISSGSO
Gets a list of sessions owned by this server.

Usage

DCL ISSGSO ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), FIXED BIN(15),
FIXED BIN(15));

CALL ISSGSO (length, sessions, count, code);

Parameters

length
INPUT. The length (in 16-bit halfwords) of the array that is to hold the session numbers of
all the currently active sessions for this server.

sessions
INPUT —» OUTPUT. A pointer to an array in your program. You supply a pointer to an array
of size length in your program. ISC uses this pointer to copy the session numbers of your
currently active sessions into this array.

count
OUTPUT. A count of the number of active sessions for this server. A count of the actual
number of sessions is returned here, even if the array pointed to by sessions is not large
enough to hold all of the session numbers. A value of 0 indicates that the server currently has
no sessions.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$TooShort
The array length specified in length is too small to contain all of the server's session
numbers. The total number of active sessions is returned to count; no session numbers
are returned to sessions.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

1 4 - 2 F i r s t E d i t i o n

Retrieving Session Information
ISSGSO

Discussion

ISSGSO copies the session numbers of all of your currently active sessions into an array in your
program. You must define an array in your program large enough to hold these session numbers,
and then specify the length of this array to the subroutine. If the array is not large enough, ISC
returns the total number of sessions to count, but does not return any session numbers to the
array pointed to by sessions. If the array is large enough, ISC copies the session numbers into the
array pointed to by sessions and returns the total number of sessions to count.
The list of sessions returned by this subroutine includes sessions that are currently being
established or terminated. Sessions are listed in random order.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

r

F i r s t E d i t i o n 1 4 - 3

Subroutines Reference V: Event Synchronization

ISSGSA

IS$GSA
Gets the attributes of a session.

Usage

DCL ISSGSA ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT),
PTR OPTIONS(SHORT), PTR OPTIONS (SHORT),
FIXED BIN(15));

CALL ISSGSA (number, config, syncs, identity, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

config
INPUT -» OUTPUT. Either a null pointer or a pointer to a Session Configuration Block in
your program. A Session Configuration Block contains the global configuration parameters
for the session and your server's local configuration parameters. You supply a pointer to a
blank Session Configuration Block in your program. ISC uses this pointer to write your
configuration parameter values into your Session Configuration Block. If you specify a null
pointer, this parameter returns no information.

syncs
INPUT —> OUTPUT. Either a null pointer or a pointer to a Session Synchronizers List in
your program. A Session Synchronizers List contains the identifiers of the synchronizers
established for your server. You supply a pointer to a blank Session Synchronizers List in
your program. ISC uses this pointer to write identifiers for your synchronizers into your
Session Synchronizers List. If you specify a null pointer, this parameter returns no
information.

identity
INPUT —> OUTPUT. Either a null pointer or a pointer to an Attribute Identity Block in your
program. An Attribute Identity Block provides information about the other server participating
in this session. You supply a pointer to a blank Attribute Identity Block in your program. ISC
uses this pointer to write the server information into your Attribute Identity Block. If you
specify a null pointer, this parameter returns no information.

1 4 - 4 F i r s t E d i t i o n

Retrieving Session Information
ISSGSA

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$BadVersion
You have specified an invalid version number in one of the structures used by this
subroutine.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

Discussion

ISSGSA can return session configuration information, synchronizer identifiers, and the identity
attributes of the other server participating in the session. You can choose to receive only some
of this information by specifying a null pointer for one or more of the subroutine's parameters.
ISSGSA can return information to an Attribute Identity Block. This information includes the
attributes of the server at the other end of the session and which server initiated the session. The
Attribute Identity Block has the following format:

del 1 AttributeldentityBlock,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 UserlD char(32) var,
2 IAmlnitiator bit(l) aligned,
2 TargetServerName char(12) var;

The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

NodeName
The PRIMENET node name that identifies the system that is running the other server.

UserlD
The user ID of the other server. Returns a remote ID if the other server is on another node
and has established a remote ID using the ARID command.

F i r s t E d i t i o n 1 4 - 5

Subroutines Reference V: Event Synchronization

ISSGSA

IAmlnitiator
A logical value. Returns 1 if the server calling ISSGSA is the session initiator and 0 if it is
the session recipient.

TargetServerName
If the server calling ISSGSA is the session initiator, TargetServerName returns the server
name of the other (recipient) server. If it is the session recipient, the value of
TargetServerName is undefined.

This subroutine also returns the session configuration and the identifiers for your session
synchronizers. The attributes displayed by this subroutine are the actual session attributes, which
may differ slightly from the attributes requested by ISSRS or ISSAS. For example, ISC may
allocate a queue larger than the one requested in ISSRS.
If you call this subroutine during session establishment, some items of information may not be
established yet or may not be available to the caller. These items are represented as zeros or
blanks in the returned structures.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

1 4 _ 6 F i r s t E d i t i o n

Retrieving Session Information
ISSGSS

IS$GSS
Gets status information about a session.

Usage

DCL ISSGSS ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), FIXED BIN(15));

CALL ISSGSS (number, status, code);

Parameters

number
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine.

status
INPUT -» OUTPUT. A pointer to a Session Status Block, which contains status information
about the current session. You supply a pointer to a blank Session Status Block in your
program. ISC uses this pointer to write status information into your Session Status Block.

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$BadVersion
You have supplied an invalid version number in your Session Status Block.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

F i r s t E d i t i o n 1 4 - 7

Subroutines Reference V: Event Synchronization

ISSGSS

Discussion

ISSGSS returns information about the current status of the session in a Session Status Block.
The Session Status Block has the following format:

del 1 SessionStatusBlock,
2 Version fixed bin(15),
2 Phase fixed bin(15),
2 ExceptionsToBeCleared fixed bin(15),
2 MessageAreaUsers fixed bin(15),
2 CurrentQueueStatus,

3 NormalSend fixed bin(15),
3 NormalReceive fixed bin(15),
3 ExpeditedSend fixed bin(15),
3 ExpeditedReceive fixed bin(15);

Upon successful completion, ISC assigns values to the fields of this structure. These field values
refer to the status of your side of the session, not to the overall session status. All items are
counted from 1. The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

Phase
The current phase of your side of the session. This field can take the following PL/I values:

ISC_PC$Establishing
Session is being established.

ISC_PC$DataTransfer
Session has been established. This phase begins for the session recipient when it
successfully calls ISSAS. This phase begins for the session initiator when it successfully
calls ISSGRS.

ISC_PC$Terminating
Session is being terminated. Either the other server has called ISSTS (Terminate
Session), or the system has terminated the other server.

FTN values for these phase codes are listed in Appendix C.

ExceptionsToBeCleared
This field contains the number of outstanding exceptions pending on your server for this
session. This exception count is independent of the ExceptionPending synchronizer.

1 4 - 8 F i r s t E d i t i o n

Retrieving Session Information
ISSGSS

MessageAreaUsers
This field contains the number of your server's sessions that are currently assigned to this
session's message area. A message area is shared by using the ExistingSessionID field when
configuring the session. A value of 1 indicates that this session is the only session using this
message area. A value of 0 indicates that no message area is configured for this session.

CurrentQueueStatus
These fields contain the number of messages currently on the receive queues and the number
of message slots available on the send queues that are configured to your server for this
session. If a queue is not configured, ISC returns a value of 0 to the corresponding
CurrentQueueStatus field.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

F i r s t E d i t i o n 1 4 _ 9

S u b r o u t i n e s R e f e r e n c e V : E v e n t S y n c h r o n i z a t i o n ' ^ ^

ISSSTA

IS$STA
Gets statistics about the current session.

Usage

DCL ISSSTA ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), FIXED BIN(15));

CALL ISSSTA (number, statistics, code);

Parameters

n u m b e r ^
INPUT. The session number that you use to identify this session. This session number was
assigned by either the ISSRS or ISSGRQ subroutine .

statistics
INPUT -> OUTPUT. A pointer to the Session Statistics Block, which contains current
statistics for this session. You supply a pointer to a blank Session Statistics Block in your
program. ISC uses this pointer to write statistics gathered since the beginning of the session
i n t o y o u r S e s s i o n S t a t i s t i c s B l o c k . ^ S

code
OUTPUT. The status code. The possible codes are:

ISC_SC$OK
The operation completed successfully.

ISC_SC$NoSession
The session number you specified does not refer to an existing session.

ISC_SC$NotEstablished
The specified session has not been fully established.

ISC_SC$BadVersion
You have supplied an invalid version number in your Session Statistics Block.

ISC_SC$SoftwareError
An unexpected software error has occurred. Report any occurrence of this error to the
System Administrator.

1 4 _ 1 0 F i r s t E d i t i o n

Retrieving Session Information
ISSSTA

Discussion

ISSSTA can be called only while a server is in the DataTransfer or Terminating phases of a
session, as indicated by ISSGSS. It returns statistics compiled over the duration of the current
session to a Session Statistics Block. The Session Statistics Block has the following format:

del 1 SessionStatisticsBlock,
2 Version fixed bin(15),
2 Normal Messages,

3 Sent fixed bin(31),
3 Received fixed bin(31),
3 FailedSends fixed bin(31),
3 FailedReceives fixed bin(31),

2 ExpeditedMessages,
3 Sent fixed bin(31),
3 Received fixed bin(31),
3 FailedSends fixed bin(31),
3 FailedReceives fixed bin(31),

2 Exceptions,
3 Count fixed bin(31),

2 Allocations,
3 Failed fixed bin(31),
3 AverageBufferSize fixed bin(15),

2 MessageArealnfo,
3 CurrentAreaUsage fixed bin(15),
3 MaxAreaUsage fixed bin(15);

Upon successful completion, ISC assigns values to the fields of this structure. These statistics
refer to the activities performed by your server during the session, not to overall session activity.
All items are counted from 1. The fields are defined as follows:

Version
The version number of the structure. Use the ISC_VERSION_NUMBER key value to set this
field. ISC_VERSION_NUMBER is supplied in the ISC_STRUCTURES.INS include files.

NormalMessages and ExpeditedMessages
These fields count the number of times your server has performed the specified operation
during the current session. A failed operation is one that could not be performed because
there was either no message to receive from the queue, or no space available on the queue to
send a message.

Exceptions
This field counts the number of exceptions (delivery failures and terminations) received by
your server during this session.

F i r s t E d i t i o n 1 4 - 1 1

Subroutines Reference V: Event Synchronization

ISSSTA

Allocations
These fields count the number of failed buffer allocation attempts, and the average size (in
bytes) of the buffers your server has successfully allocated during this session.

MessageArealnfo
These fields contain the percent of the message area that your server is currently using, and
the maximum percent that it has used during this session.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

" >

1 4 _ 1 2 F i r s t E d i t i o n

Appendices

r

r

Quick Reference to Calling Sequences

The following figures illustrate the calling sequence for the subroutines described in this volume.
Subroutines are listed in alphabetical order.
The illustrations show input parameters above the subroutine call and output parameters below
the subroutine call. A special graphic, shown as a dot and arrow, indicates a pointer to an area
in your program. You supply this pointer as an input parameter and the subroutine uses this
pointer to write information into the area it points to. The subroutine returns the pointer as an
output parameter. The subroutine call does not modify the pointer itself.

J
F i r s t E d i t i o n A _ - |r

S u b r o u t i n e s R e f e r e n c e V : E v e n t S y n c h r o n i z a t i o n - »

* >

^ >

A _ 2 F i r s t E d i t i o n / - ^ '

Quick Reference to Calling Sequences

IS$AB
Allocate an ISC Message Buffer

ISSAB

S e r v e r ' s L e n g t h o f
Sess ion Buffer Requested
N u m b e r (i n B y t e s)

FIXED BIN(15) FIXED BIN(15)

buffer = IS$AB (number, length, code)

PTR
OPTIONS
(SHORT)

Pointer to
Allocated
Buffer

FIXED BIN(15)

Status
Code

First Edition A-3

Subroutines Reference V: Event Synchronization

ISSAS

IS$AS
Accept an ISC Session

Pointer to
Message Pointer to
Specifier for Recipient's

Recipient's Optional Session
Session Connect Configuration
Number Message Block

F I X E D B I N (1 5) P T R P T R
OPTIONS OPTIONS
(SHORT) (SHORT)

IS$AS (number, connectmessage, config, syncs, code)

PTR FIXED BIN(15)
OPTIONS
(SHORT)

Pointer to Status
S e s s i o n C o d e
Synchronizers
List

A-4 First Edition

Quick Reference to Calling Sequences

IS$CE
Clear an ISC Session Exception

Server's
Session
Number

FIXED BIN(15)

IS$CE (number, code)

FIXED BIN(15)

Status
Code

ISSCE

First Edition A-5

Subroutines Reference V: Event Synchronization

ISSFB

IS$FB
Free an ISC Message Buffer

Server's Pointer to
Session Buffer to
Number be Freed

FIXED BIN(15) PTR
OPTIONS
(SHORT)

IS$FB (number, buffer, code)

FIXED BIN(15)

Status
Code

" >

A-6 First Edition

Quick Reference to Calling Sequences

IS$GE
Get an ISC Session Exception

Server's
Session
Number

FIXED BIN(15)

IS$GE (number, exception, connectmessage, code)

FIXED BIN(15) PTR
OPTIONS
(SHORT)

FIXED BIN(15)

E x c e p t i o n C o d e P o i n t e r t o S t a t u s
Possible Values are: Message Specifier Code
ISC_EX$DeliveryFailure for Optional
ISC_EX$ServerTerminate Connect Message
ISC_EX$SystemTerminate

ISSGE

First Edition A-7

Subroutines Reference V: Event Synchronization

ISSGRQ

IS$GRQ
Get an ISC Session Request

I I 1
IS$GRQ (lln, connectmessage, config, number, initiator Jd, code)

PTR
OPTIONS
(SHORT)

PTR
OPTIONS
(SHORT)

PTR FIXED BIN(15) PTR FIXED BIN(15)
OPTIONS
(SHORT)

OPTIONS
(SHORT)

Pointer to
Recipient's
Low Level
Name

Pointer to
Message
Specifier for
Optional
Connect
Message

Pointer to
Session
Configuration
Block

Recipient's
Session
Number

Pointer to
Initiator
Authentication
Block

Status
Code

A-8 First Edition

Quick Reference to Calling Sequences

ISSGRS

IS$GRS
Get an ISC Session Request Response

Initiator's
Session
Number

FIXED BIN(15)

! !
IS$GRS (number, reserved, recipient Jd, response, connectmessage, code)

PTR FIXED BIN(15)
OPTIONS
(SHORT)

PTR FIXED BIN(15)
OPTIONS
(SHORT)

Pointer to Response to
Targe t Sess ion Reques t
Authentication Possible Values
Block

Pointer to Status
M e s s a g e C o d e
Specifier for

a r e : O p t i o n a l
I S C _ R C $ A c c e p t e d C o n n e c t
ISC_RC$ServerTerminate Message
ISC_RC$SystemTerminate

First Edition A-9

Subroutines Reference V: Event Synchronization

ISSGSA

IS$GSA
Get ISC Session Attributes

Server's
Session
Number

FIXED BIN(15)

i 1 I
IS$GSA (number, config, syncs, identity, code)

PTR PTR PTR F IXED B IN (15 !
OPTIONS OPTIONS OPTIONS
(SHORT) (SHORT) (SHORT)

Pointer to
the Server's
Session
Configuration
Block

Pointer to
the Server's
Attribute
Identity
Block

Pointer to
the Server's
Session
Synchronizers
List

Status
Code

A-10 First Edition

Quick Reference to Calling Sequences

IS$GSO
Get a List of ISC Sessions Owned by This Server

Length (in 16-bit
Halfwords) of the
Array of Session
Numbers

FIXED BIN(15)

ISSGSO (length, sessions, count, code)

PTR
OPTIONS
(SHORT)

FIXED BIN(15)

FIXED BIN(15;

Pointer to
the Array of
Session
Numbers

Status
Code

Count of
Active Sessions
for This Server

ISSGSO

First Edition A-11

Subroutines Reference V: Event Synchronization

ISSGSS

IS$GSS
Get ISC Session Status Information

Server's
Session
Number

FIXED BIN(15)

IS$GSS (number, status, code)

PTR FIXED BIN(15)
OPTIONS
(SHORT)

Status
Code

Pointer to
the Session
Status Block

A-12 First Edition

Quick Reference to Calling Sequences

IS$RM
Receive an ISC Message

Server's
Session
Number

Boolean Flag to
Select Normal or
Expedited Message Queue

F I X E D B I N (1 5) B I T (l) A L I G N E D

!
IS$RM (number, message, queue, code)

PTR
OPTIONS
(SHORT)

FIXED BIN(15)

Status
Code

Pointer to
Message
Specifier

ISSRM

First Edition A-13

Subroutines Reference V: Event Synchronization

ISSRS

IS$RS
Request an ISC Session

Pointer to
Pointer to Message
Low Level Specifier for Pointer to
Name of Optional Optional Session
Session Connect Configuration
Recipient Message Block

PTR PTR PTR
OPTIONS OPTIONS OPTIONS
(SHORT) (SHORT) (SHORT)

IS$RS (lln, connectmessage, config, number, syncs, code)

FIXED BIN(15) PTR FIXED BIN(15;
OPTIONS
(SHORT)

Initiator's
Session
Number

Status
Code

Pointer to
Initiator's
Session
Synchronizers
List

A-14 First Edition

Quick Reference to Calling Sequences

IS$SM
Send an ISC Message

Server's
Session
Number

Pointer to
Message
Specifier

Boolean Flag to
Select Normal
or Expedited
Message Queue

r
FIXED BIN(15) PTR BIT(l) ALIGNED

OPTIONS
(SHORT)

IS$SM (number, message, queue, code)

FIXED BIN(15)

Status
Code

ISSSM

First Edition A-15

Subroutines Reference V: Event Synchronization

ISSSTA

IS$STA
Get ISC Current Session Statistics

Server's
Session
Number

FIXED BIN(15)

IS$STA (number, statistics, code)

PTR FIXED BIN(15)
OPTIONS
(SHORT)

Po in te r t o S ta tus
the Session Code
Statistics Block

A-16 First Edition

Quick Reference to Calling Sequences

IS$TS
Terminate an ISC Session

Server's
Session
Number

Pointer to
Message
Specifier for
Optional
Connect
Message

FIXED BIN(15) PTR
OPTIONS
(SHORT)

IS$TS (number, reserved, connectmessage, code)

FIXED BIN(15)

Status
Code

ISSTS

First Edition A-17

Subroutines Reference V: Event Synchronization

ISNSC

ISN$C
Catalog Server's Low Level Name

Pathname
of Server's
High Level
Name File

Pointer to
Server's Low
Level Name

CHAR(*) VAR PTR

ISN$C (hlnf, l ln, code)

FIXED BIN(15)

Standard
Error Code

A-18 First Edition

Quick Reference to Calling Sequences

ISNSL

ISN$L
Look Up Server's Low Level Name in a High Level Name File

Pathname of
High Level
Name File

CHAR(*) VAR

!
ISN$L (hlnf, lln, code)

PTR FIXED BIN(15)

Pointer to Standard
Server's Error Code
Low Level
Name

First Edition A-19

Subroutines Reference V: Event Synchronization

ISNSRC

ISN$RC
Recatalog Server's Low Level Name

Pathname
of Server's Pointer to
High Level Server's Low
Name File Level Name

CHAR(*) VAR PTR

ISN$RC (hlnf, l ln, code)

FIXED BIN(15)

Standard
Error Code

" >

A-20 First Edition

Quick Reference to Calling Sequences

ISN$UC
Uncatalog (Delete) Server's Low Level Name

Pathname of
High Level
Name File

CHAR(*) VAR

ISN$UC (hlnf, code)

FIXED BIN(15;

Standard
Error Code

ISN$UC

First Edition A-21

Subroutines Reference V: Event Synchronization

SRSSGN

SRS$GN
Get the Server Name of a Process

Process
Number

FIXED BIN(15)

SRS$GN (who, mysync, name, code)

FIXED BIN(15) FIXED BIN(15)

CHAR(12) VAR

If Process Number
is Caller, Returns
Identifier for the
Session Request The Server
Pending Synchronizer. Name for
Otherwise, Returns Zero. This Process

Status
Code

A-22 First Edition

Quick Reference to Calling Sequences

SRSSGP

SRS$GP
Get the Process Numbers of all Processes That Share a Specified
Server Name

The Name Size of Array
of the Server (in Number
to be Listed of Entries)

CHAR(*) VAR FIXED BIN(15)

SRS$GP (name, arraysize, array, numproc, code)

(*)FIXED BIN(15) FIXED BIN(15)

FIXED BIN(15)

Array of
Process
Names

Status
Code

Number of
Processes
Listed

First Edition A-23

Subroutines Reference V: Event Synchronization

SRSSLN

SRS$LN
List All Active Server Names

Number of
Server Names
to Retrieve

FIXED BIN(15)

SRS$LN (numservers, names, numnames, code)

(*) CHAR(12) VAR FIXED BIN(15)

FIXED BIN(15)

Array of
Retrieved
Server Names

Status
Code

Number of
Server Names
in the Array

A-24 First Edition

Quick Reference to Calling Sequences

SYN$CHCK
Return Information About an Event Synchronizer

Identifier of the
Event Synchronizer

FIXED BIN(15)

SYN$CHCK (syncjdentifier, notices, waiters, code)

FIXED BIN(15) FIXED BIN(15)

FIXED BIN(15)

Number of
Notices on
the Synchronizer

Status
Code

Number of
Processes
Waiting on
the Synchronizer

SYNSCHCK

First Edition A-25

Subroutines Reference V: Event Synchronization

SYNSCREA

SYN$CREA
Create an Event Synchronizer

Number of Notices
With Which Synchronizer
is Created

FIXED BIN(15)

SYN$CREA (count, syncjdentifier, code)

FIXED BIN(15) FIXED BIN(15)

Synchronizer's
Identifier

Status
Code

A-26 First Edition

Quick Reference to Calling Sequences

SYN$DEST
Destroy an Event Synchronizer

Identifier of the
Synchronizer to
be Destroyed

FIXED BIN(15)

SYN$DEST (syncjdentifier, code)

FIXED BIN(15)

Status
Code

SYNSDEST

First Edition A-27

Subroutines Reference V: Event Synchronization

SYNSGCHK

SYN$GCHK
Return Count of Notices or Waiters on an Event Group

Priority Level(s) at
Identifier of the Which This Call
Event Group is to Function

FIXED BIN(15) FIXED BIN(15)

SYNSGCHK (groupjdentifier, priority Jevel, notices, waiters, code)

FIXED BIN(15) FIXED BIN(15)

FIXED BIN(15)

Number of Notices
on This Group

Status Code

Number of
Processes Waiting
on This Group

A-28 First Edition

Quick Reference to Calling Sequences

SYNSGCRE
Create an Event Group

SYNSGCRE

Number of Priority Levels
Used by This Group

FIXED BIN(15)

SYNSGCRE (priorityJevels, groupjdentifier, code)

FIXED BIN(15) FIXED BIN(15)

Identifier of the
Event Group
Created

Status Code

First Edition A-29

Subroutines Reference V: Event Synchronization

SYNSGDST

SYNSGDST
Destroy an Event Group

Identifier of the Event
Group to be Destroyed

FIXED BIN(15)

SYNSGDST (groupjdentifier, code)

FIXED BIN(15)

Status Code

A-30 First Edition

Quick Reference to Calling Sequences

SYNSGLST
List Groups in Server

Size of List

FIXED BIN(15)

SYNSGLST (size, l ist, count, code)

(*) FIXED BIN(15) FIXED BIN(15)

FIXED BIN(15)

Array to Which Call
Returns Identifiers of
the Groups in This
Server

Status Code

Total Count of Event
Groups in This Server

SYNSGLST

First Edition A-31

Subroutines Reference V: Event Synchronization

SYNSGRTR

SYNSGRTR
Retrieve a Notice From an Event Group

■J
c:

.Cb

CQ

Q «/>
U 3
X iSM COPm

IT)

CD
Z >
M LU

8 " oCD*= >
o ©

©© cc
c g© £ (fl

15
O

©> <n

S---Sk ° °•8 | §a. > ll

c:

I-
c
cbI
cts

cb

75 E .2 c
CO

CO
O

CC

8 o

£ co

_ .°
T3 Q3

W O O

^=> t«- t*ro o o> T T

I I2 2> >
CO CO

^ >

.52

©a. o
P i
o-5

.cb

c:

rro
z
>■
CO

A-32 First Edition

Quick Reference to Calling Sequences

SYNSGTWT
Perform a Timed Wait on an Event Group

523
M "8

cb PQ

O " p " t / >

O W 3
o X

M
Cm

fl
CO

<b
CO -—̂
=3
•*J ■—' 0)c:cb

t oor
o CQ

r °> ■2"8
0

' i - t
W 8 ^

£ X
M

©>
LU

o ©2 DC

SYNSGTWT

.03

I|»s
J c <0 ^

c:

I-
cbccbI-C
■J
CtJ_f
cb

■♦3

I
.cb

•s So
© P

11■8
© c© £

J^ >,2 O Q)32 CO LL 2 OC

8 II - '-1_, < 8<_
o E

"8 9> 2 F.2 </> 69-ro o o> X X

^ to ro o co co
£cr

s
o 2
fe O

32 lu

r First Edition A-33

Subroutines Reference V: Event Synchronization

SYNSGWT

SYNSGWT
Wait on an Event Group

Identifier of the
Event Group

FIXED BIN(151

SYNSGWT (groupjdentifier, syncjdentifier, for_client_use, code)

FIXED BIN(15) FIXED BIN(15)

(3) FIXED BIN(15)

Identifier of
Synchronizer From
Which a Notice is
Returned

Status Code

Identifies the Event
Whose Notice is
Returned

A-34 First Edition

Quick Reference to Calling Sequences

SYNSINFO
Return Information About an Event Synchronizer

SYNSINFO

Identifier of the
Event Synchronizer

FIXED BIN(15)

SYNSINFO (syncjdentifier, information, code)

PTR FIXED BIN(15)
OPTIONS
(SHORT)

Pointer to
SynclnfoRec,
a Structure
to Which the
Call Returns
Information

Status Code

r
^^ First Edition A-35

Subroutines Reference V: Event Synchronization

SYNSLIST

SYNSLIST
List Synchronizers Owned by This Server

Size of List

FIXED BIN(15)

SYNSLIST (size, list, count, code)

(*) FIXED BIN(15) FIXED BIN(15)

FIXED BIN(15)

Array to Which the Call
Returns Identifiers of the
Synchronizers in This
Server

Status Code

Total Count of
Synchronizers in
This Server

A-36 First Edition

Quick Reference to Calling Sequences

SYNSLSIG
List Synchronizers Belonging to This Event Group

SYNSLSIG

Identifier of the
Event Group Size of List

FIXED BIN(15) FIXED BIN(15)

SYNSLSIG (groupjdentifier, size, list, count, code)

(*) FIXED BIN(15) FIXED BIN(15)

FIXED BIN(15)

Array to Which
Call Returns
Identifiers of
Synchronizers
in Group

Status Code

Total Count of
Synchronizers
in Group

First Edition A-37

Subroutines Reference V: Event Synchronization

SYNSMVTO

SYNSMVTO
Move an Event Synchronizer Into an Event Group

Identifier of Synchronizer
to be Moved

Identifies Event Associated
With This Synchronizer

Identifier of Group
Priority Level for
Synchronizer

FIXED BIN(15)

FIXED BIN(15)

(3) FIXED BIN(15)

FIXED BIN(15)

SYNSMVTO (groupjdentifier, syncjdentifier, priority Jevel, for_client_use, code)

~ >

FIXED BIN(15)

Status Code

A-38 First Edition

Quick Reference to Calling Sequences

SYNSPOST
Post a Notice on an Event Synchronizer

Identifier of the Synchronizer on
Which a Notice is to be Posted

FIXED BIN(15)

SYNSPOST (syncjdentifier, code)

FIXED BIN(15)

Status Code

SYNSPOST

First Edition A-39

Subroutines Reference V: Event Synchronization

SYNSREMV

SYNSREMV
Remove an Event Synchronizer From an Event Group

Identifier of Synchronizer to be
Removed From a Group

FIXED BIN(15)

SYNSREMV (syncjdentifier, code)

FIXED BIN(15)

Status Code

A-40 First Edition

Quick Reference to Calling Sequences

SYNSRTRV
Retrieve a Notice From an Event Synchronizer

Identifier of the Synchronizer from
Which a Notice is to be Retrieved

FIXED BIN(15)

SYNSRTRV (syncjdentifier, what_happened, code)

FIXED BIN(15) FIXED BIN(15)

Indicates Whether a Status Code
Notice was Retrieved
Possible Values Are:

SYN_WHC$ Notice
SYN_WHC$NoNotice

SYNSRTRV

First Edition A-41

Subroutines Reference V: Event Synchronization
SYNSTMWT

SYNSTMWT
Perform a Timed Wait on a Synchronizer

Maximum Amount of
Identifier of the Time That Calling
Synchronizer Process is to Wait

FIXED BIN(15) FIXED BIN(31)

SYNSTMWT (syncjdentifier, waitjime, what_happened, code)

FIXED BIN(15) FIXED BIN(15)

Indicates Whether
Notice was Retrieved
or waiMime Elapsed
Possible Values Are:
SYN_WHC$Notice
SYN_WHC$TimeOut

Status Code

A-42 First Edition

Quick Reference to Calling Sequences

SYNSWAIT
Wait on an Event Synchronizer

Identifier of the
Synchronizer

FIXED BIN(15)

SYNSWAIT (syncjdentifier, code)

FIXED BIN(15!

Status Code

SYNSWAIT

f~ First Edition A-43

Subroutines Reference V: Event Synchronization

TMRSCANL

TMRSCANL
Cancel a Timer

Identifier of Timer
to be Cancelled

FIXED BIN(15)

TMRSCANL (timerjdentifier, expired_status, code)

BIT(l) ALIGNED FIXED BIN(15)

Boolean Flag Indicating Status Code
Expired Status of Timer
Possible Values Are:

TRUE (expired)
FALSE (not expired)
(Always FALSE for
Repetitive Timers)

A-44 First Edition

TMRSCREA
Create a Timer

Type of Timer
to be Created

FIXED BIN(15)

TMRSCREA (type, timerjdentifier, code)

FIXED BIN(15) FIXED BIN(15)

Identifier of the Status °°de
Timer Created

Quick Reference to Calling Sequences
TMRSCREA

First Edition A-45

Subroutines Reference V: Event Synchronization

TMRSDEST

TMRSDEST
Destroy a Timer

Identifier of the Timer
to be Destroyed

FIXED BIN(15)

TMRSDEST (timerjdentifier, expired_status, code)

BIT(l) ALIGNED FIXED BIN(15)

Boolean Flag Indicating Status Code
Expired Status of Timer
Possible Values Are:
TRUE (expired)
FALSE (not expired)

A-46 First Edit ion '^ j

Quick Reference to Calling Sequences

TMRSGTMR

TMRSGTMR
Return Information About a Timer

Identifier of the Timer

FIXED BIN(15)

TMRSGTMR (timerjdentifier, information, code)

P T R F I X E D B I N (1 5)
OPTIONS
(SHORT)

Po in te r t o S ta tus Code
a User-specified
Structure to Which
the Call Returns
Information About
the Timer

First Edition A-47

Subroutines Reference V: Event Synchronization

TMRSLIST

TMRSLIST
List Timers Within This Server

Size of List

FIXED BIN(15)

TMRSLIST (s ize, l is t , count , code)

(*) FIXED BIN(15) FIXED BIN(15!

FIXED BIN(15)

Array to Which
the Call Returns
the Identifiers of
the Timers in
This Server

Status Code

Total Count of
Timers in This
Server

A-48 First Edition

Quick Reference to Calling Sequences
TMRSSABS

TMRSSABS
Set an Absolute Timer

Identifier of the Time When
Identifier of the Synchronizer That Timer is to
Timer to be Set Timer is to Notify Expire

FIXED BIN(15) FIXED BIN(15) 1,2 FIXED BIN(31),
2 FIXED BIN(31)

TMRSSABS (timerjdentifier, syncjdentifier, expirationjime, expired_status, code)

BIT(l) ALIGNED FIXED BIN(15)

Boolean F lag Sta tus Code
Indicating Expired
Status of Timer
Possible Values Are:
TRUE (expired)
FALSE (not expired)

First Edition A-49

Subroutines Reference V: Event Synchronization

TMRSSINT

TMRSSINT
Set an Interval Timer

Identifier of the Interval of Time (in
Identifier of the Synchronizer That the Milliseconds) After Which
Timer to be Set Timer js t0 Notify -rjmer js t0 Expire

FIXED BIN(15) FIXED BIN(15) FIXED BIN(31)

TMRSSINT (timerjdentifier, syncjdentifier, expirationjnterval, expired_status, code)

BIT(l) ALIGNED FIXED BIN(15)

Boolean Flag Indicating Status Code
Expired Status of Timer
Possible Values Are:
TRUE (expired)
FALSE (not expired)

A-50 First Edition

Quick Reference to Calling Sequences
TMRSSREP

TMRSSREP
Set a Repetitive Timer

Identifier of the
Timer to be Set

Identifier of the Interval of Time (in Milliseconds)
Synchronizer That at Which Timer is to Post
Timer is to Notify Notices Periodically

FIXED BIN(15) FIXED BIN(15) FIXED BIN(31)

TMRSSREP (timerjdentifier, syncjdentifier, expiration Jnterval, code)

FIXED BIN(15)

Status Code

^ First Edition A-51

Sample Programs

Programs Accessing Synchronizers and Groups
The two sample programs that follow perform the same operations. The first version is written
in PL/I and the second in F77. Both versions:

• Create an event synchronizer with an initial notice count of 1
• Create an event group with 2 priority levels
• Move the event synchronizer just created into priority level 1 of the event group just

created
• Retrieve information about this synchronizer
• List the event groups that belong to this server

PL/I Example
/* PL/I program invoking SYN$CREA, SYN$GCRE, SYN$MVTO, */
/* SYN$DEST, SYN$GDST, SYN$GLST, and SYN$INFO */

SyncExample: PROCEDURE OPTIONS(MAIN);

%include 'syscom>sync_codes.ins.pll ' ;
%include 'syscom>keys.ins.pl l ' ;
%include 'syscom>errormsghdlr. ins.pl l ' ;

del syn$crea external entry
del syn$gcre external entry
del syn$mvto external entry

del syn$info external entry
del syn$glst external entry

del syn$dest external entry
del syn$gdst external entry
del er$print external entry

(fixed bin(15)
(fixed bin(15)
(fixed bin(15)

(3)fixed bin,
(fixed bin(15)
(fixed b in(15)
fixed bin(15)

(fixed bin(15)
(fixed bin(15)
(fixed bin(15)
c h a r (*) v a r, c h a r (*) v a r) ;

fixed b in(15) , fixed b in(15))
fixed b in(15) , fixed b in(15))
fixed b in(15) , fixed b in(15) ,

fi x e d b i n (1 5)) ;
po i n te r, fi xed b i n (15)) ;
(*) fixed b in ,
fixed bin (15))
fixed b in (15))
fixed bin (15))
char(*)var, fixed bin (15),

First Edition B-1

Subroutines Reference V: Event Synchronization

del notice, SyncNum, status fixed bin (15) ;
del PriorityLevels, GroupNum, level fixed bin(15);
del fcu(l :3) fixed b in(15) ;
del GroupListSize, GroupCount fixed bin(15);
del GroupList(1:5) fixed bin(15);
del info like SyncInfoRec;
del InfoPtr pointer;

/* Create a synchronizer with one notice count. */

no t i ce =1 ;
call syn$crea (notice, SyncNum, status);

/* Output message; if there is an error, do not continue. */

call er$print (k$nrtn, ssc$sync, status, 'Cannot create synchronizer',
'SyncExample ') ;

/* Create a group with 2 priority levels. */

PriorityLevels = 2;
call syn$gcre (PriorityLevels, GroupNum, status);
if (status *= SYN_SC$OK)

/* Output message; if there is an error, clean it up. */

then do;
call er$print (k$irtn, ssc$sync, status, 'Cannot create group',

'SyncExample ') ;
call syn$dest (SyncNum, status);
r e t u r n ;
end;

/* Move the synchronizer into level 1 of the group. */

level = 1;
fcu(l) = 0;
feu (2) = 0;
feu (3) = 1;
call syn$mvto (GroupNum, SyncNum, level, feu, status);
if (status A= SYN_SC$0K)

then do;
cal l er$pr int (k$ir tn, ssc$sync, status,

'Cannot move sync to group', 'SyncExample');
call syn$gdst(GroupNum, status);
call syn$dest(SyncNum, status);
r e t u r n ;

end;

B _ 2 F i r s t E d i t i o n

Sample Programs

/* Get information about synchronizer. */

InfoPtr = ADDR(info);
call syn$info (SyncNum, InfoPtr, status);
if (status A= SYN_SC$0K)

then do;
cal l er$pr int (k$ir tn, ssc$sync, status,

'Cannot get info on sync', 'SyncExample');
call syn$gdst(GroupNum, status);
call syn$dest(SyncNum, status);
r e t u r n ;

end;

/* Get a list of groups which belong to this server. */

GroupL is tS ize =5 ;
call syn$glst (GroupListSize, GroupList, GroupCount, status)
if (status A= SYN_SC$0K)

then do;
cal l er$pr int (k$ir tn, ssc$sync, status,

'Cannot get list of groups', 'SyncExample');
call syn$gdst(GroupNum, status);
call syn$dest(SyncNum, status);
r e t u r n ;

end;

end SyncExample;

First Edition B-3

Subroutines Reference V: Event Synchronization

F77 Example
C F77 program invoking SYN$CREA, SYN$GCRE, SYN$MVT0,
C SYN$GLST, and SYN$INF0
C
$INSERT SYSC0M>SYNC_C0DES.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C
C Declarations

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*2
CHARACTER*8
CHARACTER*5

NOTICE, SYNCNUM, STATUS, PRIORITYLEVELS, GROUPNUM
FCU(3), GROUPLISTSIZE, GROUPCOUNT, GR0UPLIST(5)
SUBSYSTEM(3), LEVEL
INFOPTR
SYNCINF0REC(6), INGROUP, GRPNUM, LEV
FORCLIENT(3), NAME(5)
ROUTINE
SSNAME

^ >

C Equivalences
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(INGROUP, SYNCINFOREC(1))
(GRPNUM, SYNCINFOREC(2))
(LEV, SYNCINFOREC(3))
(FORCLIENT, SYNCINFOREC(4))
(NAME(2), ROUTINE)
(SUBSYSTEM(2), SSNAME)

C Create a synchronizer with one notice count.
NAME(1) =8
SUBSYSTEM(1) = 5
SSNAME = 'SYNC$'
NOTICE = 1
CALL SYN$CREA (NOTICE, SYNCNUM, STATUS)
IF (STATUS .EQ. SYE$OK) GO TO 10
ROUTINE = 'SYN$CREA'
CALL ER$PRINT (K$NRTN, SUBSYSTEM, STATUS, 0, NAME)

C Create a group with 2 priority levels.
10 PRIORITYLEVELS = 2

CALL SYN$GCRE (PRIORITYLEVELS, GROUPNUM, STATUS)
IF (STATUS .EQ. SYE$OK) GO TO 20
ROUTINE = 'SYN$GCRE'
CALL ER$PRINT(K$IRTN, SUBSYSTEM, STATUS, 0, NAME)
CALL SYN$DEST(SYNCNUM, STATUS)
CALL EXIT

B-4 First Edition

Sample Programs

C Move the synchronizer into level 1 of the group.
20 FCU(l) = 0

FCU(2) = 0
FCU(3) = 1
LEVEL = 1
CALL SYN$MVTO (GROUPNUM, SYNCNUM, LEVEL, FCU, STATUS)
IF (STATUS .EQ. SYE$OK) GO TO 30
ROUTINE = 'SYN$MVTO'
CALL ERSPRINT(K$IRTN, SUBSYSTEM, STATUS, 0, NAME)
CALL SYN$GDST(GROUPNUM, STATUS)
CALL SYNSDEST(SYNCNUM, STATUS)
CALL EXIT

C Get information about synchronizer.
30 INFOPTR = LOC(SYNCINFOREC)

CALL SYN$INFO (SYNCNUM, INFOPTR, STATUS)
IF (STATUS .EQ. SYE$OK) GO TO 40
ROUTINE = 'SYNSINFO'
CALL ER$PRINT(K$IRTN, SUBSYSTEM, STATUS, 0, NAME)
CALL SYNSGDST(GROUPNUM, STATUS)
CALL SYN$DEST(SYNCNUM, STATUS)
CALL EXIT

C Get a list of groups which belong to this server.
40 GROUPLISTSIZE = 5

CALL SYNSGLST (GROUPLISTSIZE, GROUPLIST, GROUPCOUNT, STATUS)
IF (STATUS .EQ. SYE$OK) GO TO 50
ROUTINE = 'SYN$GLST'
CALL ERSPRINT(K$IRTN, SUBSYSTEM, STATUS, 0, NAME)
CALL SYNSGDST(GROUPNUM, STATUS)
CALL SYNSDEST(SYNCNUM, STATUS)

50 CALL EXIT
END

First Edition B-5

Subroutines Reference V: Event Synchronization

Programs Accessing Timers
The following two program examples perform the same operations: they create a repetitive timer
and get information about the timer. The first example is written in PIVI and the second in F77.

PL/I Example
/* PL/I program creating a repetitive timer and getting */
/ * i n f o r m a t i o n a b o u t i t . * /

TmrExample: PROCEDURE OPTIONS(MAIN);

%include ' syscom>timermik.ins.pll' ;
% inc lude ' syscom>keys . ins .p l l ' ;
%include 'sysconOerrormsghdlr. ins.pl l ' ;

del tmr$dest external entry (fixed bin(15), bit(l) al igned, fixed bin(15)),
del tmr$gtmr external entry (fixed bin(15), pointer, fixed bin(15));
del tmr$crea external entry (fixed bin(15), fixed bin(15), fixed bin(15));
del er$print external entry (fixed bin(15), char(*)var, fixed bin(15),

c h a r (*) v a r, c h a r (*) v a r) ;
del kind, TmrNum, status fixed bin(15);
del info like RepTimerlnfo;
del InfoPtr pointer;

/* Create a repetitive timer. */

kind = Repetitive;
call tmr$crea (kind, TmrNum, status);
cal l er$pr int (k$nrtn, ssc$t imer, status,

'Cannot create timer', 'SyncExample');

/* Get information about timer. */

InfoPtr = ADDR(info);
call tmr$gtmr (TmrNum, InfoPtr, status);

ca l l er$pr in t (k$ i r tn , ssc$t imer, s ta tus,
'Cannot get info on timer', 'SyncExample');

call tmr$dest (TmrNum, Expired, Status);
end TmrExample;

B - 6 F i r s t E d i t i o n

Sample Programs

F77 Example
C F77 program creating a repetitive timer and
C getting information about it.

$INSERT SYSCOM>TIMERMIK.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 KIND, TMRNUM, STATUS, SUBSYSTEM(4), NAME(5), EXPIRED
INTEGER*4 INFOPTR, REMAININGTIME, SUCCEEDINGINTERVALS
INTEGER*2 REPTIMERINF0(8), TIMER, SYNC, STATE, KINDINFO
CHARACTER*6 SSNAME
CHARACTER*8 ROUTINE

C Equivalences
EQUIVALENCE (TIMER, REPTIMERINFO(1))
EQUIVALENCE (SYNC, REPTIMERINFO(2))
EQUIVALENCE (STATE, REPTIMERINFO(3))
EQUIVALENCE (KINDINFO, REPTIMERINFO(4))
EQUIVALENCE (REMAININGTIME, REPTIMERINFO(5))
EQUIVALENCE (SUCCEEDINGINTERVALS, REPTIMERINFO(7))
EQUIVALENCE (NAME(2), ROUTINE)
EQUIVALENCE (SUBSYSTEM(2), SSNAME)

C Create a repetitive timer.
NAME(1) =8
SUBSYSTEM(1) = 6
SSNAME = 'TIMERS'
KIND = REP
CALL TMR$CREA (KIND, TMRNUM, STATUS)
IF (STATUS .EQ. TME$OK) GO TO 10
ROUTINE = 'TMRSCREA'
CALL ERSPRINT(K$NRTN, SUBSYSTEM, STATUS, 0, NAME)

C Get information about timer.
10 INFOPTR = LOC(REPTIMERINFO)

CALL TMRSGTMR (TMRNUM, INFOPTR, STATUS)
ROUTINE = 'TMRSGTMR'
CALL ER$PRINT(K$IRTN, SUBSYSTEM, STATUS, 0, NAME)
CALL TMR$DEST(TMRNUM, EXPIRED, STATUS)

2 0 CALL EXIT
END

F i r s t E d i t i o n B _ 7

Subroutines Reference V: Event Synchronization

Programs Using InterServer Communications
The two sample programs that follow demonstrate the two sides of an ISC session. The first
program shows the session initiator side of the session, the second program shows the session
recipient side of the session. Both programs are written in PL/I. Both programs use a directory
named HLNFS, which you must create on your system. The session initiator program:

• Looks up the Low Level Name of the session recipient.
• Requests an ISC session with a default session configuration.
• Sends a Normal message that contains a data part.

The session recipient program:

• Catalogs the server's Low Level Name.
• Creates an event group and moves synchronizers into it.
• Sets local configuration parameters.
• Sends and receives Normal messages that contain a data part.
• Handles exceptions of different types.

PL/I Example: ISC Session Initiator Program
/* PL/I program for ISC session initiator */

SESSION_INITIATOR: procedure options (main);

/* Include Key Files and Structure Files: */

% inc lude ' syscom> isc_keys . ins .p l l ' ;
% inc l ude ' s yscom> isc_s t r uc tu res . i ns .p l l ' ;
%include 'syscom>sync_codes.ins.pll ' ;
% inc lude ' syscom>er ro rmsghd l r. i ns .p l l ' ;
% inc lude ' syscom>keys . ins .p l l ' ;
% inc lude ' s yscom>er rd . i ns .p l l ' ;

/* Establish Constants */

%replace TRUE by ' l 'b;
%replace FALSE by 'O'b;
%replace NORMAL by 'O'b; /* normal message flag for IS$SM and IS$RM */
%replace MESSAGE_SIZE_IN_BYTES by 1024;

B - 8 F i r s t E d i t i o n

Sample Programs

r
r

/* Declare Procedures & Functions: */

declare is$ab external entry (fixed bin, fixed bin, fixed bin)
r e t u r n s (p t r o p t i o n s (s h o r t)) ;

dec la re i sSrs ex te rna l en t ry (p t r op t ions (shor t) , p t r op t ions (shor t)
ptr options (short), fixed bin, ptr options(short), fixed bin);

dec lare isSgrs external ent ry (fixed b in , p t r opt ions(shor t) ,
p t r opt ions(shor t) , fixed b in, p t r opt ions(shor t) , fixed b in) ;

dec lare is$sm externa l ent ry (fixed b in , p t r opt ions(shor t) ,
b i t (l) a l i gned , fixed b in) ;

dec lare is$ts externa l ent ry (fixed b in , fixed b in , p t r
o p t i o n s (s h o r t) , fi x e d b i n) ;

dec lare isn$ l ex terna l ent ry (char (128) var, p t r, fixed b in) ;
declare syn$wait external entry (fixed bin, fixed bin);
declare gsnam$ external entry (char(32) var);
declare er$print external entry (fixed bin, char(*) var, fixed bin,

char (32) var, char(32) var);
declare ioa$ external entry (char(*), fixed bin);
dec la re nu l l bu i l t i n ;
declare addr bui l t in;

/* LOCAL VARIABLES */

/* Associate structures in your program with the ISC templates */

d e c l a r e 1 A u t h l i k e I n i t i a t o r A u t h B l o c k ,
1 M S l i k e M e s s a g e S p e c i fi e r ,
1 L L N l i k e L o w L e v e l N a m e ,
1 S y n c s l i k e S e s s i o n S y n c L i s t ;

/* Declare other ISC variables */

declare Sessionld bin;
declare ISC_code bin;
declare sync_code bin;
declare code bin;
declare ResponseCode bin;
declare HLNF char(128) var;
declare bptr pt r opt ions(short) ;

/* Declare other non-ISC variables */

declare i fixed bin;
dec lare sess ion_a l located b i t (l) a l igned;
declare connect_message char (128) ;
declare buffer (MESSAGE_SIZE_IN_BYTES) fixed bin based;

/ * E x e c u t i o n b e g i n s h e r e * /

/* Initialize variables */

HLNF = 'hlnfs>glenn.hlnf; /* Recipient's High Level Name File */
session_allocated = FALSE;
bptr = NULL;

F i r s t E d i t i o n B - 9

Subroutines Reference V: Event Synchronization

/* Look up the Low Level Name of the server with whom */
/ * y o u w i s h t o e s t a b l i s h a s e s s i o n . * /

call isn$l (HLNF, addr(LLN), code);

if (code A= 0)
then

do;
call er$print (k$irtn, 'ERRD', code,

'No HLNF for server ' , 'session_ini t iator ') ;
goto ERROR_CLEANUP;

end;

/* Set the version numbers for all ISC structures used. */

Auth.Version = ISC_VERSION_NUMBER;
Syncs.Version = ISC_VERSION_NUMBER;
LLN.Version = ISC_VERSION_NUMBER;
MS.Version = ISC_VERSION_NUMBER;

/* Set the values of the Message Specifier parameters */
/ * f o r s e n d i n g a C o n n e c t m e s s a g e . * /

MS.Control.SuppliedLength = 30;
MS.Control.ReturnedLength = 0;
MS.Control.BufferLocation = addr(connect_message);
MS.Data.BufferLength = 0;
MS.Data.BufferLocat ion = nul l () ;

/* Create a Connect message */

connect_message = 'Message from session initiator';

/* Request a session. This session request specifies the */
/* default session configuration and includes a connect message */

call is$rs(addr(LLN), addr(MS), null(), Sessionld, addr(Syncs), ISC_code);

if (ISC_code A= ISC_SC$0K)
then

do;
cal l er$print (k$irtn, ' ISC', ISC_code,

' IS$RS to rec ip ien t f a i l ed ' , ' sess ion_ in i t i a to r ') ;
goto ERROR_CLEANUP;

end;

session_allocated = TRUE;
/* Wait for a response to your session request. A response */
/* to the SessionResponsePending synchronizer automatically */
/ * w a k e s u p y o u r s e r v e r . * /

call syn$wait (Syncs.SessionResponsePending, sync_code);

if (sync_code A= SYN_SC$OK)
then

do;
call er$print (k$irtn, 'SYNC, sync_code,

'Can' ' t wait on SRpP sync', 'session_init iator ') ;
goto ERROR_CLEANUP;

end;

B - 1 0 F i r s t E d i t i o n

Sample Programs

/* Get the response to your session request. */

MS.Control.SuppliedLength = 128;
MS.Control.ReturnedLength = 0;
MS.Control.BufferLocation = addr(connect_message);
MS.Data.BufferLength = 0;
MS.Data.BufferLocat ion = nul l () ;

ca l l i s$g rs (Sess ion ld , nu l l () , add r (Au th) ,
ResponseCode, addr(MS), ISC_code);

if (ISC_code A= ISC_SC$0K)
t h e n

do;
ca l l er$pr in t (k$ i r tn , ' ISC, ISC_code,

' IS$GRS f rom rec ip ien t f a i l ed ' , ' sess ion_ in i t i a to r ') ;
goto ERROR_CLEANUP;

end;

/* Deter/nine if the session request has been accepted or rejected */

select (ResponseCode);

when (ISC_RC$Accepted)

/* Write your own code here that examines the connect message */
/* returned from IS$GRS in Message Specifier. For example: */
/* i f((MS.Control.ReturnedLength >= 0) 6 (connect_message(1)='A')) */
/* then print out a message indicating service A is being provided.*/

when (ISC_RC$ServerTerminate)
do;

/* Write your own code here that examines the connect message */
/ * r e t u r n e d f r o m I S $ G R S i n M e s s a g e S p e c i fi e r . * /

cal l er$print (k$irtn, ' ISC', ResponseCode,
'Server Terminate on IS$GRS', 'session_initiator') ;

session_allocated = FALSE;
goto ERROR_CLEANUP;

end;

when (ISC_RC$SystemTerminate)
do;

cal l er$pr int (k$ir tn, ' ISC, ResponseCode,
'System Terminate on IS$GRS', 'session_ini t iator ') ;

session_allocated = FALSE;
goto ERROR_CLEANUP;

end;

o therw ise
goto ERROR_CLEANUP;

end;

F i r s t E d i t i o n B - 1 1

Subroutines Reference V: Event Synchronization

/* Session request was accepted. Prepare to exchange messages. */
/* Init ial ize the parameters of the Message Specifier. */

MS.Control.SuppliedLength = 0;
MS.Control.ReturnedLength = 0;
MS.Cont ro l .BufferLocat ion = nu l l () ;
MS.Data.BufferLength =0;
MS.Data.Buf ferLocation = nullO;

/* Allocate a buffer for the data part of a Normal message. */
/* This buffer is allocated from the Message Area established */
/ * b y t h e d e f a u l t c o n fi g u r a t i o n p a r a m e t e r s . * /

bptr = is$ab (Sessionld, MESSAGE_SIZE_IN_BYTES, ISC_code);

if (ISC_code A= ISC_SC$OK)
then

do;
ca l l e r$pr in t (k$ i r tn , ' ISC ' , ISC_code, ' IS$AB fa i led ' , ' sess ion_ in i t ia to r ') ;
goto ERROR_CLEANUP;

end;

/* Write your message into the data part buffer. The example */
/* shown here fills the buffer with ascending numbers */

do i = 1 to MESSAGE_SIZE_IN_BYTES;
bptr -> buffer (i) = i;

end;

/* Set the parameters of the Message Specifier to describe */
/ * t h i s d a t a p a r t b u f f e r . * /

MS.Data.BufferLength = MESSAGE_SIZE_IN_BYTES;
MS.Data.BufferLocation = bptr;

/* Wait for an available slot on the send queue. If a slot is */
/* available, no wait occurs and the program proceeds immediately. */

call syn$wait (Syncs.ReadyToSend, sync_code);

/* Send the message. The message sent is a Normal message */
/ * c o n s i s t i n g o f a d a t a p a r t o n l y . * /

call is$sm (Sessionld, addr(MS), NORMAL, ISC_code);

if ISC_code A= ISC_SC$OK
then

do;
ca l l e r$pr in t (k$ i r tn , ' ISC ' , ISC_code, ' IS$SM fa i led ' , ' sess ion_ in i t ia to r ') ;
goto ERROR_CLEANUP;

end; /* otherwise V
call ioa$('Message successfully sent to session recipient. %.', 100);

/* Send and receive other messages, as needed. When finished, */
/ * t e r m i n a t e y o u r s i d e o f t h e s e s s i o n . * /

call is$ts (SessionID, 0, nullO, ISC_code) ;
r e t u r n ;

ERROR_CLEANUP:

B . - | 2 F i r s t E d i t i o n

Sample Programs

/* This error-handling routine terminates your side of the session, */
/ * f r e e i n g a l l a l l o c a t e d r e s o u r c e s . * /

i f (sess ion_a l l oca ted)
then call isSts (SessionID, 0, null(), ISC_code);

r e t u r n ;

end;

F i r s t E d i t i o n B - 1 3

Subroutines Reference V: Event Synchronization

PL/I Example: ISC Session Recipient Program

" >

^

^ >

/* PL/I program for ISC session recipient. This program accepts a * /
/ * s e s s i o n r e q u e s t w i t h t h e d e f a u l t p a r a m e t e r s a n d t h e n p l a c e s * /
/ * i t s s y n c h r o n i z e r s i n a n e v e n t g r o u p . I t t h e n r e s p o n d s t o * /
/ * e x c e p t i o n s o f v a r i o u s t y p e s (i n c l u d i n g r e c e i v i n g a l l p e n d i n g * /
/ * messages) . I f no excep t ion i s pend ing , i t sends and rece ives * /
/ * Normal messages. Al l o f these operat ions are governed by the * /
/ * post ing of not ices on synchronizers in the user 's event group. * /

SESSION_RECIPIENT: procedure options (main);

/* Include Key Files and Structure Files: */

%include 'syscom>isc_keys.ins.pll' ;
%include 'syscom>isc_structures.ins.pll ' ;
%include 'syscom>sync_codes.ins.pll' ;
%include 'syscom>srs_codes.ins.pll ' ;
%include 'syscom>errormsghdlr.ins.pll' ;
%include 'syscom>keys.ins.pl l ' ;
%include 'syscom>errd. ins.pl l ' ;

/ * Estab l ish Constants * /

%replace TRUE by 'l'b;
%replace FALSE by 'O'b;

%replace NORMAL by 'O'b; /* Normal message flag for ISSM, ISRM */
%replace BUFFERSIZE by 1024; /* Size of Data message buffer */
%replace SESSIONBLOCKSIZE by 657; /* Size of Session Information block */

/* Declare Procedures & Functions */

declare is$ab external entry (fixed bin, fixed bin, fixed bin)
returns (ptr opt ions(short)) ;

declare is$fb external entry (fixed bin, ptr options(short), fixed bin);
declare is$grq external entry (ptr options(short), ptr options(short),

ptr options (short), fixed bin, ptr options(short), fixed bin);
declare is$as external entry (fixed bin, ptr options (short) ,

ptr options (short), ptr options (short), fixed bin);
declare is$rm external entry (fixed bin, ptr options(short),

bit(1) aligned, fixed bin);

declare is$sm external entry (fixed bin, ptr options(short),
bit(l) al igned, fixed bin);

declare is$ts external entry (fixed bin, fixed bin, ptr
options (short), fixed bin);

declare is$ce external entry (fixed bin, fixed bin);
declare is$ge external entry (fixed bin, fixed bin, ptr

options (short), fixed bin);
declare isn$c external entry (char(128) var, ptr, fixed bin);
declare isn$rc external entry (char(128) var, ptr, fixed bin);
declare syn$gwt external entry (fixed bin, fixed bin, ptr, fixed bin);

B - 1 4 F i r s t E d i t i o n
" >

Sample Programs

declare syn$gcre external entry (fixed bin, fixed bin, fixed bin);
declare syn$mvto external entry (fixed bin, fixed bin, fixed bin,

ptr, fixed bin);

declare srs$gn external entry (fixed bin, fixed bin, char(12) var,
fixed bin);

declare gsnam$ external entry (char(32) var);
declare er$print external entry (fixed bin, char(*) var, fixed bin,

char(32) var, char(32) var);
declare str$au external entry (fixed bin (31)) returns(ptr options(short));
declare str$fu external entry (ptr options(short));
declare ioa$ external entry (char(*), fixed bin);
declare nul l bui l t in;
declare addr builtin;

/* LOCAL VARIABLES */

/* Declare ISC structures */

declare 1 SessionBlock based,
2 Sessionld fixed bin,
2 A u t h l i k e I n i t i a t o r A u t h B l o c k ,
2 Config l i ke Sess ionConfigura t ionBlock ,
2 M S l i k e M e s s a g e S p e c i fi e r ,
2 LLN l i ke LowLeve lName,
2 Syncs l i ke Sess ionSyncL is t ;

/* Declare Connect message array */

declare my_connect_message char (128);

/* Declare other ISC local variables */

declare SyncGroupId bin;
declare ISC_code bin;
declare sync_code bin;
declare srs_code bin;
declare code bin;
declare ResponseCode bin;
declare HLNF char(128) var;
declare myLLN like LowLevelName;
declare exception fixed bin;

/* Declare variables for the rest of the program */

declare MyNode char(32) var;
declare SessionRequestPending fixed bin;
declare SyncNotified fixed bin;
declare SessionBlockPtr ptr options (short);
declare SendBufferPtr ptr options(short);
declare BufferLength fixed bin;
declare i fixed bin;
declare received_all bit(l) al igned;
declare buffer (BUFFERSIZE) fixed bin based;

F i r s t E d i t i o n B - 1 5

Subroutines Reference V: Event Synchronization

/ * E x e c u t i o n b e g i n s h e r e * /

/* Specify the High Level Name File location */

HLNF = 'hlnfs>glenn.hlnf';

/* Determine your server name and node name, and construct */
/ * a L o w L e v e l N a m e (L L N) . * /

call gsnam$ (MyNode);
myLLN.NodeName = MyNode;
myLLN.ForCIientUse =5; /* perhaps a code for a subservice provided by

this server */

call srs$gn (0, SessionRequestPending, myLLN.ServerName, srs_code);
if (srs_code A= SRS_SC$OK)

then
do;

call er$print (k$irtn, 'SRS', srs_code,
'Can''t get my server name', 'session_recipient');

r e t u r n ;
end;

/* Catalog (or recatalog) your Low Level Name (LLN) */

call isn$c (HLNF, addr (myLLN), code);

if (code = e$exst)
then call isn$rc (HLNF, addr (myLLN), code);

if (code A= 0)
then

do;
call er$print (k$irtn, 'ERRD', code,

'Can''t (re)catalog my HLNF', 'session_recipient');
r e t u r n ;

end;

/* Create an event group with four priority levels. */

call syn$gcre (4, SyncGroupId, sync_code);

if Sync_code A= SYN_SC$OK
then

do;
call er$print (k$irtn, ssc$sync, sync_code, 'Cannot create sync group'

' sess ion rec ip ien t ') ;
r e t u r n ;

end;

B _ 1 6 F i r s t E d i t i o n

Sample Programs

/* Move your SessionRequestPending synchronizer into the event group. */

call syn$mvto (SyncGroupId, SessionRequestPending, 1, null (), sync_code);

if sync_code A= SYN_SC$0K
then

do;
call er$print (k$irtn, ssc$sync, sync_code, 'Cannot add SRqP to group',

' sess ion rec ip ien t ') ;
re tu rn ;

end;

/* The following code is a loop that includes all of the */
/* processing for this ISC session. The loop is only exited */
/ * w h e n a n e r r o r o c c u r s d u r i n g p r o c e s s i n g . * /

do while (1 = 1);

/ * Wa i t on the even t g roup con ta in ing your * /
/ * S e s s i o n R e q u e s t P e n d i n g s y n c h r o n i z e r . * /

call syn$gwt (SyncGroupId, SyncNotified, SessionBlockPtr, sync_code);

if sync_code A= SYN_SC$OK
then

do;
call er$print (k$irtn, ssc$sync, sync_code, 'Cannot wait on sync group',

' sess ion rec ip ien t ') ;
r e t u r n ;

end;

/* Wait was ended by a notice posted to one of the synchronizers in */
/* your event group. Determine which synchronizer in the event group */
/ * w a s n o t i fi e d . * /

select (SyncNot ified);

when (SessionRequestPending)
do;

/* Allocate a session block. This session block will */
/* contain all of the structures needed during this */
/* session. Session block is pointed to by SessionBlockPtr. */

SessionBlockPtr = str$au (SESSIONBLOCKSIZE);

/* Set the version numbers for the ISC structures used. */

SessionBlockPtr -> SessionBlock.LLN.Version = ISC_VERSION_NUMBER;
SessionBlockPtr -> SessionBlock.MS.Version = ISC_VERSION_NUMBER;
SessionBlockPtr -> SessionBlock.Config.Version = ISC_VERSION_NUMBER;
SessionBlockPtr -> SessionBlock.Auth.Version = ISC_VERSION_NUMBER;

F i r s t E d i t i o n B - 1 7

Subroutines Reference V: Event Synchronization

/* Set the Message Specifier parameters to receive a
/* Connect message as part of the get session request,

SessionBlockPtr -> SessionBlock.MS.Control.SuppliedLength = 128;
SessionBlockPtr -> SessionBlock.MS.Control.ReturnedLength = 0;
SessionBlockPtr -> SessionBlock.MS.Control.BufferLocation =

addr(my_connect_message);
SessionBlockPtr -> SessionBlock.MS.Data.BufferLength = 0;
SessionBlockPtr -> SessionBlock.MS.Data.BufferLocation = null();

/* Get the session request,

call is$grq(addr(SessionBlockPtr -> SessionBlock.LLN),
addr(SessionBlockPtr -> SessionBlock.MS),
addr(SessionBlockPtr -> SessionBlock.Config),
SessionBlockPtr -> SessionBlock.Sessionld,
addr(SessionBlockPtr -> SessionBlock.Auth), ISC_code);

if (ISC_code A= ISC_SC$OK)
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

'GRQ from client failed', 'session_recipient');
call str$fu (SessionBlockPtr);
re tu rn ;

end;

Write some code here that examines the initiator authentication
information provided by IS$GRQ to the SessionBlock.Auth structure.
Determine whether or not to accept a session with this server.
Read the connect message (if any) supplied by the session initiator.
This program assumes that the session request is acceptable.

/* Set Syncs version number. */

SessionBlockPtr -> SessionBlock.Syncs.Version = ISC_VERSION_NUMBER;

/ ' Create a Connect message.

my_connect_message = 'Connected to ISC Server Glenn';

/* Initialize Message Specifier parameters for */
/ * s e n d i n g t h e c o n n e c t m e s s s a g e . * /

SessionBlockPtr ->
SessionBlockPtr ->
SessionBlockPtr ->
SessionBlockPtr ->

addr (my_connect.
SessionBlockPtr ->
SessionBlockPtr ->

SessionBlock.MS.Version = ISC_VERSION_NUMBERj
SessionBlock.MS.Control.SuppliedLength = 29;
SessionBlock.MS.Control.ReturnedLength = 0;
SessionBlock.MS.Control.BufferLocation =

.message);
SessionBlock.MS.Data.BufferLength = 0;
SessionBlock.MS.Data.BufferLocation = nullO;

B-18 First Edition

Sample Programs

/* Accept the session with the default configuration. */
/* This call to IS$AS also sends a Connect message to */
/ * t h e s e s s i o n i n i t i a t o r . * /

call is$as (SessionBlockPtr -> SessionBlock.Sessionld,
addr (SessionBlockPtr -> SessionBlock.MS), null(),
addr (SessionBlockPtr -> SessionBlock.Syncs), ISC_code)

if (ISC_code A= ISC_SC$OK)
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

' IS$AS fa i led ' , 'sess ion_rec ip ient ') ;
call str$fu (SessionBlockPtr);
re tu rn ;

end; /* Session is established. */

/* Move other synchronizers into your event group. */

call syn$mvto (SyncGroupId, SessionBlockPtr -> SessionBlock.Syncs.
ExceptionPending, 2, SessionBlockPtr, sync_code);

if sync_code A= SYN_SC$OK
then

do;
call er$print (k$irtn, ssc$sync, sync_code,
'Cannot add ExceptionPending sync to group','session recipient')
call str$fu (SessionBlockPtr);
r e t u r n ;

end;

call syn$mvto (SyncGroupId, SessionBlockPtr -> SessionBlock.Syncs.
ReadyToReceive, 3, SessionBlockPtr, sync_code);

if sync_code A= SYN_SC$OK
then

do;
call er$print (k$irtn, ssc$sync, sync_code,
'Cannot add ReadyToReceive sync to group', 'session recipient');
call str$fu (SessionBlockPtr);
re tu rn ;

end;

call syn$mvto (SyncGroupId, SessionBlockPtr -> SessionBlock.Syncs.
ReadyToSend, 4, SessionBlockPtr, sync_code);

F i r s t E d i t i o n B - 1 9

Subroutines Reference V: Event Synchronization

if sync_code A= SYN_SC$OK
then

do;
call er$print (k$irtn, ssc$sync, sync_code,
'Cannot add ReadyToSend sync to group', 'session recipient'
call str$fu (SessionBlockPtr);
re tu rn ;

end;

end;

/* The following series of 'when' clauses respond to notices being */
/* posted on various synchronizers in the event group. The order */
/* in which the program checks the synchronizers is as follows: */
/ * E x c e p t i o n P e n d i n g , R e a d y To S e n d a n d R e a d y To R e c e i v e * /

/* Exception processing upon notification of ExceptionPending. */

when (SessionBlockPtr -> SessionBlock.Syncs.ExceptionPending)
do;

/* Get the exception. */

call is$ge (SessionBlockPtr -> SessionBlock.Sessionld, Exception,
addr(SessionBlockPtr -> SessionBlock.MS), ISC_code);

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, sscSisc, ISC_code,

'Cannot get exception', 'session recipient');
call str$fu (SessionBlockPtr);
re tu rn ;

end;

/* Clear the exception. */

call is$ce (SessionBlockPtr -> SessionBlock.Sessionld, ISC_code)

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

'Cannot clear Exception', 'session recipient');
call str$fu (SessionBlockPtr);
re tu rn ;

end;

select (Exception);

B _ 2 Q F i r s t E d i t i o n

Sample Programs

r

/* Handling an exception caused by a server terminate or */
/ * s y s t e m t e r m i n a t e . * /

when (ISC_EX$ServerTerminate, ISC_EX$SystemTerminate)
do;

/* I f the except ion was a ServerTerminate, the in i t ia t ing * /
/* server may have sent a Connect message. Check the */
/ * M e s s a g e S p e c i fi e r C o n t r o l a r e a . A f t e r c l e a r i n g t h e * /
/ * e x c e p t i o n , y o u c a n o p t i o n a l l y r e c e i v e a l l r e m a i n i n g * /
/* messages on the receive queue. Receive al l remaining */
/* Normal messages unt i l IS$RM returns an ISC_code of * /
/ * T e r m i n a t e d . * /

received_all = FALSE;

do while (Areceived_all);

/* Set the Message Specifier to receive a message. */

SessionBlockPtr -> SessionBlock.MS.Control.SuppliedLength = 12(
SessionBlockPtr -> SessionBlock.MS.Control.ReturnedLength = 0;
SessionBlockPtr -> SessionBlock.MS.Control.BufferLocation =

addr(my_connect_message);
SessionBlockPtr -> SessionBlock.MS.Data.BufferLength = 0;
SessionBlockPtr -> SessionBlock.MS.Data.BufferLocation = null(]

/ * Rece ive a message . * /

call is$rm (SessionBlockPtr -> SessionBlock.Sessionld,
addr(SessionBlockPtr -> SessionBlock.MS), NORMAL, ISC_code);

select (ISC_code);

when (ISC_SC$Terminated)
received_all = TRUE;

when (ISC_SC$OK)
do;
call ioa$ ('Message successfully received from

session initiator. %.', 100);

/ * I f the message conta ins a data par t , you should * /
/ * inser t your own code here to read the message * /
/ * f r o m t h e d a t a b u f f e r . * /
/ * o w n a d d r e s s s p a c e u s i n g M S . D a t a . B u f f e r L o c a t i o n * /
/* as the pointer to the data and MS.Data.BufferLength */
/ * a s a c o u n t o f t h e b y t e s i n t h e m e s s a g e . * /

F i r s t E d i t i o n B - 2 1

Subroutines Reference V: Event Synchronization

/ * F r e e t h e b u f f e r t h a t c o n t a i n e d t h e d a t a p a r t * /
/ * m e s s a g e . * /

ca l l i s$ fb (Sess ionB lockPt r -> Sess ionB lock .Sess ion ld ,
Sess ionBlockPt r ->
S e s s i o n B l o c k . M S . D a t a . B u f f e r L o c a t i o n , I S C _ c o d e) ;

if (ISC_code A= ISC_SC$OK)
t h e n

d o ;
call er$print (k$irtn, ssc$isc, ISC_code,

'Free Buffer fai led' , 'session_recipient ')
call str$fu (SessionBlockPtr);
re tu rn ;

end;
e n d ; / * o f o k a y s t a t u s * /

otherwise
do;

call er$print (k$irtn, ssc$isc, ISC_code,
'Receive Message failed', 'session_recipient');

end;
e n d ; / * o f s e l e c t * /

end ; / * o f do wh i l e no t a l l r ece i ved l oop * /

/ * Te rm ina te you r s i de o f t he sess ion . * /

call is$ts (SessionBlockPtr -> SessionBlock.Sessionld, 0,
null (), ISC_code);

call str$fu (SessionBlockPtr);

if ISC_code A= ISC_SC$0K

then
do;

call er$print (k$irtn, ssc$isc, ISC_code,
'Cannot terminate session', 'session recipient');

re turn;
end;

end;

/* Handl ing an Exception caused by a del ivery fai lure. */

when (ISC_EX$DeliveryFailure)
do;

B - 2 2 F i r s t E d i t i o n

Sample Programs

r

r
r

/* Write your own code here that resynchronizes message */
/* exchange with the other server, instructing it to */
/ * r e t r a n s m i t a n y p o s s i b l y l o s t m e s s a g e s . * /

end;

otherwise
do;

call er$print (k$irtn, ssc$isc, Exception,
'Unknown Exception returned from is$ge', 'session recipient');
call str$fu (SessionBlockPtr);
re tu rn ;

end;
end; /* of select on Exception type */

end; /* of Except ion Pending sync not ified */

/* Sending a message upon notification of ReadyToSend. */

when (SessionBlockPtr -> SessionBlock.Syncs.ReadyToSend)
do;

/* Allocate a buffer to use in sending the message. */

BufferLength = BUFFERSIZE;

SendBufferPtr = is$ab (SessionBlockPtr -> SessionBlock.Sessionld,
BufferLength, ISC_code);

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,
'Cannot allocate send message buffer', 'session recipient');

call str$fu (SessionBlockPtr);
r e t u r n ;

end;

/* Set the Message Specifier for sending a message. */

my_connect_message = 'Message from the Recipient ISC Server';

SessionBlockPtr -> SessionBlock.MS.Control.SuppliedLength = 37;
SessionBlockPtr -> SessionBlock.MS.Control.ReturnedLength = 0;
SessionBlockPtr -> SessionBlock.MS.Control.BufferLocation =

addr(my_connect_message);
SessionBlockPtr -> SessionBlock.MS.Data.BufferLength = BUFFERSIZE;
SessionBlockPtr -> SessionBlock.MS.Data.BufferLocation = SendBufferPtr;

/* Write your own code here to copy the data part of your */
/ * m e s s a g e i n t o t h e b u f f e r . F o r e x a m p l e : * /

do i = 1 to BUFFERSIZE;
SendBufferPtr -> buffer (i) = i;

end;

F i r s t E d i t i o n B - 2 3

Subroutines Reference V: Event Synchronization

/* Send the message. */

call is$sm (SessionBlockPtr -> SessionBlock.Sessionld,
addr(SessionBlockPtr -> SessionBlock.MS), NORMAL, ISC_code);

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

'Cannot send message', 'session recipient');
call str$fu (SessionBlockPtr);
re tu rn-

end,•
call ioa$('Message successfully sent to session initiator. %.', 100)

end; / * o f ReadyToSend sync * /

/* Receiving a Normal message upon notification of ReadyToReceive. */

when (SessionBlockPtr -> SessionBlock.Syncs.ReadyToReceive)
do;

/* Set the Message Specifier for receiving a message that */
/ * c o n s i s t s o f a d a t a p a r t a n d a c o n t r o l p a r t . * /

SessionBlockPtr -> SessionBlock.MS.Control.SuppliedLength = 128;
SessionBlockPtr -> SessionBlock.MS.Control.ReturnedLength = 0;
SessionBlockPtr -> SessionBlock.MS.Control.BufferLocation =

addr(my_connect_message);
SessionBlockPtr -> SessionBlock.MS.Data.BufferLength = 0;
SessionBlockPtr -> SessionBlock.MS.Data.BufferLocation = null ();

/* Receive the message. */

call is$rm (SessionBlockPtr -> SessionBlock.Sessionld,
addr(SessionBlockPtr -> SessionBlock.MS), NORMAL, ISC_code)

select (ISC_code);

when (ISC_SC$0K)
do;
call ioa$('Message successfully received from
session initiator. %.', 100);

/* If the message contains a data part, you should */
/* insert your own code here to read the message */
/ * f rom the da ta bu f fe r. For example , you cou ld * /
/* copy the message to your own address space using */
/ * M S . D a t a . B u f f e r L o c a t i o n a s t h e p o i n t e r t o t h e * /
/ * data and MS.Data.BufferLength as the count of * /
/* the bytes in the message. You should also write */
/ * c o d e t h a t e x a m i n e s t h e c o n t r o l p a r t o f t h e * /
/ * m e s s a g e . * /

B _ 2 4 F i r s t E d i t i o n

Sample Programs

/* Free the buffer that contained the data part message */

call is$fb (SessionBlockPtr -> SessionBlock.Sessionld,
SessionBlockPtr ->
SessionBlock.MS.Data.BufferLocation, ISC_code);

if (ISC_code A= ISC_SC$0K)
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

'Free Buffer fa i led ' , 'session_recip ient ') ;
call str$fu (SessionBlockPtr);
re tu rn ;

end;
e n d ; / * o f o k a y s t a t u s * /

when (ISC_SC$NothingYet) /* IS$RM status code */
; / * I g n o r e i t . * /

when (ISC_SC$Exception) /* IS$RM status code */
do;

/* Get the exception. */

call is$ge (SessionBlockPtr -> SessionBlock.Sessionld,
Exception, addr(SessionBlockPtr -> SessionBlock.MS),

ISC_code);

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, sscSisc, ISC_code,

'Cannot get exception', 'session recipient');
call str$fu (SessionBlockPtr);
r e t u r n ;

end;

/* Clear the exception. */

call is$ce (SessionBlockPtr -> SessionBlock.Sessionld,
ISC_code);

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

'Cannot clear Exception', 'session recipient');
call str$fu (SessionBlockPtr);
re tu rn ;

end;

F i r s t E d i t i o n B - 2 5

Subroutines Reference V: Event Synchronization

/* Process the different types of exceptions. */

select (Exception);

when (ISC_EX$ServerTerminate, ISC_EX$SystemTerminate)
do;

/* you can include code here that receives messages */
/ * p e n d i n g o n y o u r r e c e i v e q u e u e s . * /

call is$ts (SessionBlockPtr -> SessionBlock.Sessionld, 0,
null () , ISC_code) ;

call str$fu (SessionBlockPtr);

if ISC_code A= ISC_SC$OK
then

do;
call er$print (k$irtn, ssc$isc, ISC_code,

'Cannot terminate session', 'session recipient');
re tu rn ;

end;
end;

when (ISC_EX$DeliveryFailure)
do;

/* Write your own code here to resynchronize */
/* message exchange with the other server. */

end;

otherwise
do;

call er$print (k$irtn, ssc$isc, Exception,
'Unknown Exception returned from is$ge', 'session
r e c i p i e n t ') ;
call str$fu (SessionBlockPtr);
re tu rn ;

end;

end; /* of select on exception type. */
end; /* of when IS$RM status code = exception. */

otherwise
do;

call er$print (k$irtn, ssc$isc, ISC_code,
'Receive Message failed', ' session_recipient');

call str$fu (SessionBlockPtr);
re tu rn ;

end;

end; /* of select on status code from IS$RM */

end; /* of ReadyToReceive sync. */

B-26 First Edition

Sample Programs

r

end; /* of select on synchronizer notified. */

end; /* of do while (1 = 1) loop. */

end; /* of session_recipient program. */

F i r s t E d i t i o n B - 2 7

Status Codes

This appendix lists the status codes returned by synchronizer, timer, and ISC subroutines. It also
lists the codes returned by individual subroutines to indicate the nature of an event or status.

Synchronizer Status Codes
The following status codes are defined in synchronizer include files for programs written in PL/I,
FTN, and Pascal. The status codes defined in the PMA and C synchronizer include files are
identical to the status codes defined in the PL/I synchronizer include file.

PLII FTN Pascal Meaning
0 SYN_SC$OK SYE$OK SYN_OK Success.
1 SYN_SC$NoResources SYE$NR SYN_NoResources No resources

available.
2 SYN_SC$InvNoticeCount SYE$IN InvNoticeCount Notice count is

less than 0.
3 SYN_SC$InvSyncNum SYE$IS InvSyncNum Sync identifier is

invalid.
4 SYN_SC$SyncInGroup SYE$IG SyncInGroup Operation not

allowed on sync
in group.

5 SYN_SC$SyncHasWaiter SYE$HW SyncHasWaiter Operation not
allowed on sync
with waiters.

6 SYN_SC$InvTimeInt SYE$IT InvTimelnt Timer interval
cannot be <= 0.

7 SYN_SC$InvGroupNum SYE$GN InvGroupNum Group identifier is
invalid.

First Edition C-1

Subroutines Reference V: Event Synchronization

PLII
8 SYN_SC$SyncNotInGroup

9 SYN_SC$InvPriority

10 SYN_SC$ListTooSmall

F T N P a s c a l
SYE$NG SyncNotlnGroup

SYE$IP InvPriority

SYE$LS SYN ListTooSmall

11 SYN_SC$MaxSyncsAlloc SYE$MS MaxSyncs Alloc

12 SYN_SC$WaitHasAborted SYE$WA WaitHasAborted

13 SYN_SC$InternalError SYE$IE SYNJntemalError

Meaning
Sync must be in
group, for this
operation.
Priority must be
greater than 0.
List provided by
caller is too short.
Maximum number
of syncs has been
allocated.
Wait operation
was aborted.
Internal system
error occurred.

Synchronizer What_Happehed Codes

PLII
0 SYN_WHC$Notice

1 SYN_WHC$NoNotice

2 SYN_WHC$TimeOut

F T N P a s c a l
SYW$N Notice

SYW$NN NoNotice

SYW$TO TimeOut

Meaning
Sync returned a
notice.
No notice posted
on sync.
Wait time elapsed.

Timer Status Codes
The following status codes are defined in timer include files for programs written in PLA, FTN,
and Pascal. The status codes defined in the PMA and C timer include files are identical to the
status codes defined in the PL/I timer include file.

C-2

PLII FTN Pascal Meaning
0 TMR_SC$OK TME$OK TMR_OK Success.
1 TMR_SC$NoUpdateRights TME$NR NoRights No privilege.

First Edition

Status Codes

PLII FTN Pascal Meaning
2 TMR_SC$InvTimeZone TME$IZ InvTimeZone Time zone is out

of range.

3 TMR_SC$NoResources TME$NS TMR_NoResources No resources.
4 TMR_SC$InvTimeOffset TME$IO InvTimeOffset Time offset is

invalid.
5 TMR_SC$InvTimer TME$IR InvTimer Invalid timer

identifier.

6 TMR_SC$InvTimeParameter TME$IP InvTimeParameter Invalid time input
value.

7 TMR_SC$MaxTimerAlloc TME$MT MaxTimerAlloc Max. number of
timers has been
allocated.

8 TMR_SC$ListTooSmall TME$LS TMR_ListTooSmall List provided by
caller is too short.

9 TMR_SC$InternalError TME$IE TMR_InternalError System error has
occurred.

ISC Status Codes
The following status codes are defined in ISC include files for programs written in PL/I and
FTN. The status codes defined in ISC include files for Pascal, C, and PMA are identical to the
status codes defined in the PL/I include files.

PUI FTN
0 ISC_SC$OK ISE$OK
1 ISC_SC$AlreadyServer ISE$AS
2 ISC_SC$BadAddress ISE$BA
3 ISC_SC$NoRoom ISE$NR

4 ISC_SC$NoServer ISE$NV
5 ISC_SC$SoftwareError ISE$SE
6 ISC_SC$TooManySessions ISE$TM
9 ISC_SC$InvalidConfig ISE$IC

Meaning
Operation was successful.
Caller is already a server.
Server name is invalid.
Some system resource required to per
form this operation is unavailable.
Caller is not a server.
A serious software error has occurred.
Caller already owns too many sessions.
Configuration is invalid.

First Edition C-3

Subroutines Reference V: Event Synchronization

PLII FTN

11 ISC_SC$NothingYet ISE$NY
12 ISC_SC$LongMessage ISE$LM

13 ISC_SC$Terminated ISE$T
14 ISC_SC$NoSession ISE$NS
16 ISC_SC$BadMessage ISE$BM
17 ISC_SC$NotEstablished ISE$NE
18 ISC_SC$Exception ISE$EX
19 ISC_SC$NoRights ISE$NA
20 ISC_SC$B adException ISE$BE
21 ISC_SC$NoQueue ISE$NQ
22 ISC_SC$Established ISE$ES
23 ISC_SC$NoSuchServer ISE$SS
24 ISC_SC$TooShort ISE$TS
25 ISC_SC$NoMessageArea ISE$NM
26 ISC_SC$BadSize ISE$BS
27 ISC_SC$BadBuffer ISE$BB
29 ISC_SC$B ad Version ISE$BV

Meaning
Requested item is not available.
Control part of message was too long for
the buffer provided and has been
truncated.
Session has been terminated.
Caller does not own session.

Message specifier is invalid.
Session is not established.
An exception has occurred on the session.
Insufficient rights to perform operation.

Exception is invalid.
Specified queue does not exist.
Session is already established.

Specified server does not exist.
Array is too short.
No message area exists for this session.
Buffer size is invalid.
Buffer being returned is invalid.

Version number is invalid.

ISC Response Codes Returned by IS$GRS

P L I I F T N
105 ISC_RC$Acccpted ISR$A

210 ISC_RC$ServerTerminate ISR$T
211 ISC_RC$SystemTerminate ISR$ST

Meaning
Session request was accepted.
Session request was rejected by recipient.
Session request was rejected by system.

C-4 First Edition

Status Codes

ISC Exception Codes Returned by IS$GE

P L I I F T N
208 ISC_EX$DeliveryFailure ISX$DF

210 ISC EX$ServerTerminate ISX$T

Meaning
Delivery failure, some data may be lost.
Session has been terminated by other
server.

211 ISC_EX$SystemTerminate ISX$ST Session has been terminated by system.

ISC Phase Codes Returned by IS$GSS

PLII FTN Meaning
1 ISC_PC$Establishing ISP$E Session is being established.

2 ISC_PC$DataTransfer ISP$DT Session has been established

3 ISC_PC$Terminating ISP$T Session is being terminated.

SRS Status Codes

PLII FTN Meaning
0 SRS_SC$OK SSE$OK Operation was successful.
1 SRS_SC$NoResources SSE$NR No resources available.
2 SRS_SC$BadName SSE$BN Specified server name is invalid.
3 SRS_SC$NoSuchServer SSE$SS Specified server does not exist.
4 SRS_SC$ListTooSmall SSE$TS The list provided by the caller is too

short.
5 SRS_SC$AlreadyRegistered SSE$AR Already registered as a server.
6 SRS_SC$NotRegistered SSE$NG Not registered as a server.
7 SRS_SC$AlreadyExists SSE$AE Server name in use by another server.

First Edition C-5

Limits

The following limitations apply to PRIMOS Revision 22.0, and are subject to change for future
PRIMOS revisions.

Synchronizer and Timer Limits
• A server can have a maximum combined total of 2048 event groups and event

synchronizers. This total includes both individual event synchronizers and event
synchronizers that are members of event groups.

• A server can have a maximum of 32 timers.
• No more than 32,767 notices can be pending on an event synchronizer. Attempting to

post a notice on an event synchronizer that already has 32,767 notices pending will
permanently disable the event synchronizer. It is possible to retrieve notices from the
disabled event synchronizer, but it is not possible to post additional notices on it.

• Slave processes cannot use synchronizers or timers.

ISC Limits
• A server can participate in as many as 255 concurrent sessions. The maximum

number of concurrent sessions on the system is 511. Each of these sessions involves
two servers.

• A server can configure as many message areas as it has available dynamic segment
space. When a session initiator configures a message area, a space of the specified
size is reserved in that user's dynamic segments for the duration of the session. If a
session request fails for lack of message area space, the session initiator can do any
one of the following operations. It can terminate one of its existing sessions to free
message area space (the server must have been the initiator of that session). It can
share a message area with an existing session by setting the ExistingSessionID local
session parameter. It can request that the System Administrator assign it more
dynamic segments.

F i r s t E d i t i o n D - 1

Subroutines Reference V: Event Synchronization

• A system can support a maximum of 255 virtual circuits. A remote session requires a
virtual circuit for Normal message exchange and a second virtual circuit for the
exchange of Expedited messages. Therefore, a system can support a maximum of
from 127 to 255 concurrent remote sessions, depending on how those sessions are
configured. These remote sessions may be owned by a single server or several
different servers. Note that virtual circuits are also used by other PRIMOS operations.
Refer to Chapter 13 for further details on remote sessions.
No server may have more than 63 requests for session establishment that are awaiting
response. ISC rejects any request for a session with a server that has reached this
limit.
A server can establish a session with itself. ISC considers a server participating in this
type of session to be actually participating in two sessions, one as session initiator,
one as session recipient.
Slave processes cannot participate in ISC sessions.
A server can have as many as 2048 synchronizers. This includes all synchronizers
(ISC and non-ISC) for all concurrent sessions.
An ISC synchronizer can have as many as 32,767 pending notices. Exceeding this
number of notices permanently disables ISC use of the synchronizer.

D - 2 F i r s t E d i t i o n

Data Structures

Synchronizer Information Record
Described in Chapter 4.

del 1 SyncInfoRec based,
2 InGroup bit(l) aligned,
2 GroupNum fixed bin(15),
2 Priority fixed bin(15),
2 ForClient (3) fixed bin (15);

^ Absolute Timer Information Record
Described in Chapter 5.

del 1 AbsTimerlnfo based,
2 Timer fixed bin (15),
2 Sync fixed bin (15),
2 State fixed bin (15),
2 Kind fixed bin (15),

_^k 2 ExpirationTime like AbsoluteTime;

Interval Timer Information Record
Described in Chapter 5.

del 1 IntTimerlnfo based,
2 Timer fixed bin (15),
2 Sync fixed bin (15),
2 State fixed bin (15),
2 Kind fixed bin (15),
2 RemainingTime fixed bin (31);

F i r s t E d i t i o n E - 1

Subroutines Reference V: Event Synchronization

Repetitive Timer Information Record
Described in Chapter 5.

del 1 RepTimerlnfo based,
2 Timer fixed bin (15),
2 Sync fixed bin (15),
2 State fixed bin (15),
2 Kind fixed bin (15),
2 RepState,

3 RemainingTime fixed bin (31),
3 Succeedinglntervals fixed bin (31);

Attribute Identity Block
Described in Chapter 14.

del 1 AttributeldentityBlock,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 UserlD char(32) var,
2 IAmlnitiator bit(l) aligned,
2 TargetServerName char(12) var;

Initiator Authentication Block
Described in Chapter 8.

del 1 InitiatorAuthBlock,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 ProjectID char(32) var,
2 FullID,

3 UserlD char(32) var,
3 ACLGroupsCount fixed bin(15),
3 ACLGroups (32) char(32) var;

E-2 First Edition

Data Structures

Low Level Name
Described in Chapter 7.

del 1 LowLevelName,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 ServerName char(12) var,
2 ForCIientUse fixed bin(31),
2 Reserved (13) fixed bin(15);

f* Message Specifier
Described in Chapter 10.

del 1 MessageSpecifier,
2 Version fixed bin(15),
2 Control,

3 SuppliedLength fixed bin(15),
3 ReturnedLength fixed bin(15),

r 3 B u f f e r L o c a t i o n p t r ,2 Data,
3 BufferLength fixed bin(15),
3 BufferLocation ptr;

r
F i r s t E d i t i o n E - 3

Subroutines Reference V: Event Synchronization

Session Configuration Block
Described in Chapter 9.

del 1 SessionConfigurationBlock,
2 Version fixed bin(15),
2 SessionServices,

3 NormalService bit(l),
3 ExpeditedService bit(l),
3 SyncsToBeUsed,

4 ReadyToSend bit(l),
4 ReadyToSendExpedited bit(l),
4 ReadyToReceive bit(l),
4 ReadyToReceiveExpedited bit(l),
4 BufferAvailable bit(l),
4 SessionResponsePending bit(l),
4 ExceptionPending bit(l),

3 Reserved bit(7),
2 QueueLengths,

3 NormalSend fixed bin(15),
3 NormalReceive fixed bin(15),
3 ExpeditedSend fixed bin(15),
3 ExpeditedReceive fixed bin(15),

2 QueueThresholds,
3 NormalSend fixed bin(15),
3 NormalReceive fixed bin(15),
3 ExpeditedSend fixed bin(15),
3 ExpeditedReceive fixed bin(15),

2 MaxControlLength fixed bin(15),
2 MaxDataLength fixed bin(15),
2 MaxExpeditedLength fixed bin(15),
2 ExistingSessionID fixed bin(15),
2 MessageArea,

3 BlockSize fixed bin(15),
3 NumberOffllocks fixed bin(15),
3 Reserved fixed bin(15);

/* local */

/* global */
/* global */

/* local */
/* local */
/* local */
/* local */
/* local */
/* local V
/* local */
/* local */

/* global */
/* global */
/* global */
/* global */

/* local */
/* local */
/* local */
/* local */
/* global */
/* global */
/* global */
/* local */

/* global */
/* global */
/* global */

~ \

E-4 First Edition

Data Structures

Session Statistics Block
Described in Chapter 14.

del 1 SessionStatisticsBlock,
2 Version fixed bin(15),
2 NormalMessages,

3 Sent fixed bin(31),
3 Received fixed bin(31),
3 FailedSends fixed bin(31),
3 FailedReceives fixed bin(31),

2 ExpeditedMessages,
3 Sent fixed bin(31),
3 Received fixed bin(31),
3 FailedSends fixed bin(31),
3 FailedReceives fixed bin(31),

2 Exceptions,
3 Count fixed bin(31),

2 Allocations,
3 Failed fixed bin(31),
3 AverageBufferSize fixed bin(15),

2 MessageArealnfo,
3 CurrentAreaUsage fixed bin(15),
3 MaxAreaUsage fixed bin(15);

Session Status Block
Described in Chapter 14.

del 1 SessionStatusBlock,
2 Version fixed bin(15),
2 Phase fixed bin(15),
2 ExceptionsToBeCleared fixed bin(15),
2 MessageAreaUsers fixed bin(15),
2 CurrentQueueStatus,

3 NormalSend fixed bin(15),
3 NormalReceive fixed bin(15),
3 ExpeditedSend fixed bin(15),
3 ExpeditedReceive fixed bin(15);

F i r s t E d i t i o n £ _ - ,

Subroutines Reference V: Event Synchronization

Session Synchronizers List
Described in Chapter 9.

del 1 SessionSyncList,
2 Version fixed bin(15),
2 ReadyToSend fixed bin(15),
2 ReadyToSendExpedited fixed bin(15),
2 ReadyToReceive fixed bin(15),
2 ReadyToReceiveExpedited fixed bin(15),
2 BufferAvailable fixed bin(15),
2 SessionResponsePending fixed bin(15),
2 ExceptionPending fixed bin(15);

Target Authentication Block
Described in Chapter 8.

del 1 TargetAuthBlock,
2 Version fixed bin(15),
2 NodeName char(16) var,
2 UserlD char(32) var;

r z _ g F i r s t E d i t i o n ^ ^

Data Type Equivalents

To call a subroutine from a program written in any Prime language, you must declare the
subroutine and its parameters in the calling program. Therefore, you must translate the PL/I data
types expected by the subroutine into the equivalent data types in the language of the calling
program.
The table that follows shows the equivalent data types for the Prime languages BASIC/VM, C,
COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, and PL/I. The leftmost column lists the
generic storage unit, which is measured in bits, bytes, or halfwords for each data type. Each
storage unit matches the data types listed to the right on the same row. The table does not
include an equivalent data type for each generic unit in all languages. However, with knowledge
of the corresponding machine representation, you can often determine a suitable workaround.
For instance, to see if you can use a left-aligned bit in COBOL 74, you could write a program to
test the sign of the 16-bit field declared as COMP. In addition, if a subroutine parameter consists
of a structure with elements declared as BIT(n), it can be declared as an integer in the calling
program. Read the appropriate language chapter in the Subroutines Reference I: Using
Subroutines before using any of the equivalents shown in the table.

Note
The term PL/I refers both to full PL/I and to PL/I Subset G (PL/I-G).

F i r s t E d i t i o n F - 1

Subroutines Reference V: Event Synchronization

Table F-1
Data Type Equivalents

FIXED BIN FIXED
BIN(15)

FIXED
BIN(31)

FLOAT BIN FLOAT
BIN(23) O CD

LL m m

LU
Z

^ C D
ZZ.—1f c <
CD

stn
(0
Q.

n-"8E *
CD *
UJ tIS

CC
LU
CD
LU

Z
CD
Zo
_ J

_ i<
LU
DC

—I<
LU
DC
CD
Zo
_ J

LU
_ Joo
CD

Z<

2

fJ CVJ
CC llLU <
CD O
y o1 9

CC DC _J ll
LU LU < <CD CD O O
y £ CD CD
2 Z O O£: £: _l _J

_J ll< <
LU LU
DC DC

00
l i<
LU
OC

CD

l l<
LU
DC

<

2
cc hz _j
LU LU <
CD CD O
L U U J 5i i 3

DC
LU
CD
LU
HZ

_l l l< <
LU LU
DC CC

00
l l<
LU
DC

O
_ o T wt w o
O O Q-
O CL

• 21
in cn

| w o
O Q ol
O Cl

°%
| w o
O O CL
O CL

d.
Oo

CM
CL

OO

o
t= E
2: c
</> CD .S J3

to
J2

CD
25

to

i l
S g
m m

C/)
f -
Z

_ i<
LU
DC

oo
l i<
LU
DC

o cd
IP
c
3
CD

CV
O)
0)
C

15
cm
CO

cocn
CD
c
15
4CD

"to

I?
.t; cd
■9 D)
CM C
CO to

' t o
,_ '<3to 2o 5.

s*3-8

ra !<5o o-r cu
.t: 5.

oo ro
CM D-- cr 15

. t :
JO
X>
COc
CO
"TO
4 ^
_D

^ >

^

F-2 First Edition

Data Type Equivalents

Table F-1
Data Type Equivalents - Continued

a

CO

DC<
Xo

LU
DC=)
I -o
CL

_i<
Q O
LU LU
X Q
LL

CDz

o POINTER
OPTIONS (SHORT)

POINTER

8cn
CO

D .

LU
CO

_J DC
Q £ X

n- ^ CC °

o cc

CD
Z
DC

CO

CD

C
O
CL

z<

2

DC
LU

<
DC
< c
X *o

z<

O N"o
^ SSoc
_ ^ < X L U
t fl O O j
Q CL CL U.

a! o>
CO o
Q 0-

CO
Dl

OO

o CD
C

'55 cc
3

_r
LU LU

< <z z
c3 ffl
■5-5

x ...
s?
LU 5-J C5 DC

^ B « 2

"ST•a

CO ■
cl S2.

■o

l l
l l
co £
CQ CO

CO
i -z

(A

ffi

e?
* » t oo> _.
S CD

-t T5
T3 ro
8 to
i l - 5

■6 "
CD *i
X CO
Ll tj

CD

® '£ co■/,»•-
© ~ .5»

_X CO T3
LL T3 CM

— C D

_ ro
2 5

CD
C
Oa.
3
CM
CO

'o
Q .

3
9

<u
co

i t
3

'•5 ^
I - Io00
CO•n
-1

3 cjr
;z=j
C)
£
3 t <
CO
13

t o

3 3
cn C>

L.
•3
c (̂
oo
8

CU■s
5 _C

>.
a . a.
S
CO

C3
SZ

CO
XT CO

b fl
t>_o

C3
3
6 0

COE J
U« CQ

^ a."" o
a.a.c3O

IS
CO ,co

X> CO

< 4 - (^

55 c/j

31
«'5
o COU- t>o

First Edition F-3

Indexesr

r

r

rr

Index of Subroutines by Function

This index lists subroutines grouped by the general functions that they perform. See the Index of
Subroutines by Name to find a particular subroutine's volume, chapter, and page number.

Access Category

Add an object's name to an access category.
Convert an object from ACL protection to password protection.
Delete an access category.
Determine whether an object is accessible for a given action.
Determine whether an object is ACL-protected.
Make an object's ACL identical to that of another object.
Modify an existing ACL on an object.
Obtain the contents of an object's ACL.
Obtain the contents of an object's priority ACL.
Obtain the passwords of a subdirectory of the current directory.
Obtain the user ID and the groups to which it belongs.
Remove an object's priority access.
Set an object's ACL to that of its parent directory.
Set the owner and nonowner passwords on an object.
Set priority access on an object.
Set a specific ACL on an object.

ACSCAT
ACSRVT
CAT$DL
CALACS
ISACLS
ACSLIK

ACSCHG
ACSLST
PASLST
GPASSS
GETIDS
PASDEL
ACSDFT
SPASSS
PASSET
ACSSET

First Edition FX-1

Subroutines Reference V: Event Synchronization

Arrays

Get a character from an array.
Store a character into an array location.

GCHAR
SCHAR

Attach Points

Set the attach point to a directory specified by pathname.
Set the attach point to a specified top-level directory and partition.
Set the attach point to a specified top-level directory on any partition.
Set the attach point to the home directory.
Set the attach point to a specified top-level directory on a partition

identified by logical disk number.
Set the attach point to the login directory.
Set the attach point to a directory subordinate to the current directory.
Set the attach point to a specified user directory and, optionally, make

it the home directory.

AT$
ATSABS
ATSANY
ATSHOM

ATSLDEV

ATSOR
ATSREL
ATCHSS

Binary Search

Perform binary search in ordered table. BINSSR

Buffer Output

Provide free-format output to a buffer. IOASRS

FX-2 First Edition

Index of Subroutines by Function

Command Environment

Invoke a command from a running program.
Parse command arguments according to a character string "picture" of

the command line.
Retrieve the value of a CPL local variable.
Retrieve the value of a global variable.
Return caller's maximum command environment breadth.
Return caller's maximum command environment depth.
Return a list of commands valid at mini-command level.
Return breadth of caller's current command environment.

Set the value of a CPL local variable.
Set the value of a global variable.

CPS
CLSPIX

LVSGET
GVSGET
CESBRD
CESDPT

LISTSCMD

RD$CE_DP
LVSSET
GVSSET

Command Level

Call a new command level.
Call a new command level after an error.
Initialize the command environment.
Record command error status.
Return to PRIMOS.
Return serialization data.

Signal an error in a subsystem.

COMLVS
CMLVSE

ICES
SETRCS

EXIT
KLMSIF
SSSERR

Condition Mechanism

Continue scan for on-units.
Convert FORTRAN statement label to PL/I format.
Create an on-unit (for FTN users).
Create an on-unit (for any language except FTN).

CNSIGS
MKLBSF
MKONSF
MKONSP

First Edition FX-3

Subroutines Reference V: Event Synchronization

Create an on-unit (for PMA and PL/I users).
Perform a nonlocal GOTO.
Revert an on-unit (for FTN users).
Revert an on-unit (for any language except FTN).

Signal a condition (for FTN users).
Signal a condition (for any language except FTN).

MKONUS
PL1SNL
RVONSF
RVONUS
SGNLSF
SIGNLS

Controllers, Asynchronous, Multi-line

Assign AMLC line.
Communicate with AMLC driver.
Communicate with SMLC driver.

ASNLNS
TSAMLC

TSSLCO

Data Conversion

Convert ASCII number to binary.
Convert binary number to ASCII.
Convert the DATMOD field (as returned by RDENSS) in format

DAY, MON DD YYYY.
Convert the DATMOD field (as returned by RDENSS) in format

DAY, DD MON YYYY.
Convert a string from lowercase to uppercase or uppercase to

lowercase.
Convert the TIMMOD field (as returned by RDENSA).

Make a number printable, if possible.

CNVASA
CNVBSA
FDATSA

FEDTSA

CASESA

FTIMSA
ENCDSA

FX-4 First Edition

Index of Subroutines by Function

Date Formats

Convert ASCII date to binary format.

Convert binary date to quadseconds.
Convert binary date to ISO format.
Convert binary date to "visual" format.
Convert quadsecond date to binary format.

CVSDTB
CVSDQS
CVSFDA
CVSFDV
CVSQSD

Devices, Assigning or Attaching

Attach specified devices.
Free a logical file unit number.
Provide or set aside available logical file unit.

ATTDEV
IOCSSF
IOCSSG

Disk I/O

Read ASCII from disk.
Read binary from disk.

Register disk format with driver.
Write ASCII to disk (fixed-length records).
Write binary to disk.

ISAD07
ISBD07

DKGEOS
OSAD08
OSBD07

Drivers, Device-independent

Open PRIMOS file and perform other nondata transfer functions.
(Primarily for IOCS applications.)

Read ASCII data.
Read binary data.
Write ASCII data.
Write binary data.

CONTRL

RDASC
RDBIN

WRASC
WRBIN

First Edition FX-5

Subroutines Reference V: Event Synchronization

Encryption of Login Password

Encrypt login validation passwords. ENCRYPTS

EPFs
Allocating and Deallocating Space For EPFs

Allocate space for EPF function return information.
Allocate space and set value of EPF function return information.
Deallocate space for EPF function return information.

ALCSRA
ALSSRA
FRESRA

Management of EPFs

Combine functions of EPFSALLC, EPFSMAP, EPFSINIT, and
EPFSINVK.
Deactivate the most recent invocation of a specified EPF.
Initiate the execution of a program EPF.

Map the procedure images of an EPF file into virtual memory.
Modify user's search rules to allow dynamic linking to a library EPF.
Perform the linkage allocation phase for an EPF.
Perform the linkage initialization phase for an EPF.
Remove an EPF from a user's address space.

Replace one EPF runfile with another.
Return the state of the command processing flags in an EPF.

EPFSRUN

EPFSDEL
EPFSINVK
EPFSMAP

LNSSET
EPFSALLC

EPFSINIT
REMEPFS

RPLS
EPFSCPF

Information from In-Memory User Profile

Return highest segment number.
Return maximum number of dynamic segments.
Return maximum number of static segments.

TLSSGS
DYSSGS
STSSGS

FX-6 First Edition

Index of Subroutines by Function

Error Handling, I/O

Display I/O error message on user terminal.
Obtain contents of ERRVEC.
Set ERRVEC and perform a return or display ERRVEC message

before returning control to system.

PRERR
GETERR
ERRSET

Event Synchronizers and Event Groups
Creating, Using, and Destroying Event Synchronizers

C r e a t e a n e v e n t s y n c h r o n i z e r . S Y N S C R E A
D e s t r o y a n e v e n t s y n c h r o n i z e r . S Y N S D E S T
Perform a timed wait on an event synchronizer. SYNSTMWT
Pos t a no t i ce on an even t synch ron i ze r. SYNSPOST
Retrieve a notice from an event synchronizer. SYNSRTRV
W a i t o n a n e v e n t s y n c h r o n i z e r . S Y N S W A I T

Creating, Using, and Destroying Event Groups

Cause a process to wait on an event group.
Cause a process to perform a timed wait on an event group.
Create an event group.
Destroy an event group.
Move an event synchronizer into an event group.
Remove an event synchronizer from an event group.
Retrieve a notice from an event group.

SYNSGWT
SYNSGTWT
SYNSGCRE
SYNSGDST

SYNSMVTO
SYNSREMV
SYNSGRTR

First Edition FX-7

Subroutines Reference V: Event Synchronization

Getting Information about Synchronizers and Groups

Indicate whether synchronizer is in group; and if it is, return the group
number, priority level, and For Client Use field.

List the synchronizers in group and total number.
List the synchronizers in server and total number.
List the groups in server and total number.
Return number of notices or waiting processes.
Return number of notices on a group at one or all priority levels; if all

levels, return number of waiting processes.

SYNSINFO

SYNSLSIG

SYNSLIST
SYNSGLST

SYNSCHCK
SYNSGCHK

Executable Images

Restore an R-mode executable image.
Restore and resumes an R-mode executable image.
Save an R-mode executable image.

RESTSS

RESUSS
SAVESS

EXIT$ Condition

Disable signalling of EXITS condition.
Enable signalling of EXITS condition.
Return state of EXITS signalling.

EXSCLR
EXSSET
EXSRD

File System Objects

Append a specified suffix to a pathname.
Change the open mode of an open file.
Change the name of an object in the current directory.
Check for file existence.
Check for file open.

APSFXS
CHSMOD
CNAMSS
EXSTSA
UNITSA

FX-8 First Edition

Index of Subroutines by Function

Close a file.
Close a file by name and return a bit string indicating closed units.
Close a file system object by pathname.
Close a file system object by file unit number.
Create a new directory.
Create a new password directory.
Create a new subdirectory in the current directory.

Delete a file.
Delete a file identified by a pathname.
Delete a segment directory entry.
Determine whether an open file system object is local or remote.
Determine if a segment directory entry exists.
Extend or truncate a CAM file.
Force PRIMOS to write modified records to disk.
Generate a filename based on another name.
List the disks a given user is using.

Open supplied name.
Open supplied name with verification and delay.
Open a segment directory entry.
Open, close, delete, change access, or verify the existence of an

object.
Open a scratch file with unique name.
Open a file anywhere in the PRIMOS file structure.
Position file.
Position to end-of-file.
Position in or read from a directory.
Position in, read an entry in, or modify the size of a segment

directory.
Read a line of characters from an ASCII disk file.
Read sequentially the entries of a directory open on a file unit.
Read name and open.
Read name and open with verification and delay.

CLOSSA
CLSFNR
CLOSFN
CLOSFU
DIRSCR

CREPWS

CREASS
DELESA
FILSDL

SGDSDL
ISREMS
SGDSEX
CFSEXT

FORCEW

EQUALS
LUDSKS
OPENSA
OPNVSA
SGDSOP

SRCHSS

TEMPSA
TSRCSS
POSNSA
GENDSA
RDENSS
SGDRSS

RDLINS
DIRSRD
OPNPSA

OPVPSA

First Edition FX-9

Subroutines Reference V: Event Synchronization

Read, write, position, or truncate a file.
Retrieve a CAM file's extent map from disk.
Return directory quota and disk record usage information.
Return entries meeting caller-specified selection criteria in a directory

open on a file unit.
Return the contents of a named entry in a directory open on a file

unit.
Return a file system object's entryname and parent directory

pathname.
Return information about a specified file unit.
Return information on the system's list of logical disks.
Return the pathname of a specified unit, attach point, or segment.
Return a logical value indicating whether a specified partition supports

ACL protection and quotas.
Return position of file.

Return the size of a file system entry.
Return the minimum and maximum file unit numbers currently in use

by this user.
Return a logical value indicating whether a wildcard name was

matched.
Rewind file.
Scan the file system structure.
Search for specified types of entries in a directory open on a file unit.
Search for a file with a list of possible suffixes.
Set a CAM file's extent length value.
Set a quota on a subdirectory in the current directory.
Set or modify an object's attributes in its directory entry.

Truncate file.

Verify a supplied string as a valid filename.
Verify a supplied string as a valid pathname.
Write a line of characters to a file in compressed ASCII format.

PRWFSS

CFSREM

QSREAD
DIRSSE

ENTSRD

EXTRSA

FINFOS
LDISKS
GPATHS

PARSRV

RPOSSA
SIZES

UNITSS

WILDS

RWNDSA
TSCNSA
DIRSLS
SRSFXS
CFSSME

QSSET
SATRSS

TRNCSA
FNCHKS
TNCHKS
WTLINS

^ >

^ >

FX-10 First Edition

Index of Subroutines by Function

ISC
Establish an ISC Session

Initiator gets the session request response.
Initiator requests the session.

Recipient gets the session request.
Recipient accepts the session.

ISSGRS
ISSRS

ISSGRQ
ISSAS

ISC Message Exchange

Allocate a buffer for a message data part.
Free an allocated data part buffer.
Receive a message.
Send a message.

ISSAB
ISSFB

ISSRM
ISSSM

Monitor ISC Message Exchange Session

Get session attributes.
Get session status.
Get sessions owned by your server.
Get statistics about a session.

ISSGSA
ISSGSS
ISSGSO
ISSSTA

Terminate an ISC Session and Respond to an Exception

Clear an exception.
Get an exception.
Terminate the caller's side of a session.

ISSCE
ISSGE
ISSTS

First Edition FX-11

Subroutines Reference V: Event Synchronization

Keyboard or ASR Reader

Input ASCII from terminal or ASR reader.
Perform same function as ISAA01 but also allow input from a
cominput file.

ISAA01
ISAA12

Matrix Operations

Generate combinations.

Generate permutations.

The following groups contain subroutines for single-precision,
complex operations, respectively. (* indicates that a subroutine is

Calculate adjoint matrix.

Calculate determinant.

Calculate inverted matrix.

Calculate signed cofactor.

Calculate transpose matrix.

Multiply matrix by a scalar.

Perform matrix addition.

Perform matrix multiplication.

Perform matrix subtraction.

Set matrix to constant matrix.

Set matrix to identity matrix.

Solve a system of linear equations.

COMB
PERM

double-precision, integer, and
not available.)

MADJ, DMADJ,
IMADJ, CMADJ
MDET, DMDET,
IMDET, CMDET
MINV, DMINV,

*, CMINV
MCOF, DMCOF,
IMCOF, CMCOF

MTRN, DMTRN,
IMTRN, CMTRN
MSCL, DMSCL,
IMSCL, CMSCL

MADD, DMADD,
IMADD, CMADD
MMLT, DMMLT,
IMMLT, CMMLT
MSUB, DMSUB,
IMSUB, CMSUB
MCON, DMCON,
IMCON, CMCON

MIDN, DMIDN,
IMIDN, CMIDN

LINEQ, DLINEQ,
*, CLINEQ

FX-12 First Edition

Index of Subroutines by Function

Memory

Allocate memory on the current stack.
Allocate process-class dynamic memory.
Allocate subsystem-class dynamic memory.
Allocate user-class dynamic memory.
Allocate user-class dynamic memory.
Free process-class dynamic memory.
Free subsystem-class dynamic memory.
Free user-class dynamic memory.

Free user-class dynamic memory.
Make the last page of a segment available.
Make the last page of a segment unavailable.
Move a block of memory.

ALOCSS
STRSAP
STRSAS
STRSAU
STRSAL
STRSFP
STRSFS
STRSFR
STRSFU

MMSMLP
MMSMLP
MOVEWS

Message Facility

Receive a deferred message.
Return the receiving state of a user.
Send an interuser message.
Set the receiving state for messages.

RMSGDS
MSGSST

SMSGS
MGSETS

Numeric Conversions

Convert string (decimal) to 16-bit integer.
Convert string (decimal) to 32-bit integer.
Convert string (hexadecimal) to 32-bit integer.
Convert string (octal) to 32-bit integer.

CHSFX1
CHSFX2
CHSHX2
CHSOC2

First Edition FX-13

Subroutines Reference V: Event Synchronization

Paper Tape

Control functions for paper tape.
Input ASCII from the high-speed paper-tape reader.
Input one character from the high-speed paper-tape reader to

Register A.
Input one character from paper tape, set high-order bit, ignore line

feeds, send a line feed when carriage return is read.
Output binary data to the high-speed paper-tape punch.
Output one character to the high-speed paper-tape punch from

Register A.
Output one character to the high-speed paper-tape punch.

CSP02
ISAP02

PUB

pun

OSBP02
PlOB

PlOU

Parsing

Parse character string into tokens.
Parse a PRIMOS command line.

GTSPAR
CMDLSA

Peripheral Devices
Line Printers

Access a spooler queue.
Centronics LP.
Move data to LPC line printer.
Parallel interface to line printer (MPC).
Place file in spool queue and perform SPOOLER command functions.
Versatec printer.

SPOOLS
OSAL04

TSLMPC
OSAL06
SPSREQ
OSAL14

^ >

Printer/Plotter

Versatec.
Versatec.

OSAL14
TSVG

FX-14 First Edition

Index of Subroutines by Function

Card Reader/Punch

Input from parallel card reader.
Input from serial card reader.
Input from MPC card reader.
Parallel interface to card punch.
Parallel interface to card punch and print on card.
Raw data mover.
Read and print card from parallel interface reader.

ISAC03
ISAC09

TSCMPC
OSAC03
OSAC15
TSPMPC
ISAC15

Magnetic Tape

Raw data mover.
Read EBCDIC from 9-track.
Write EBCDIC to 9-track.

TSMT
ISAM13

OSAM13

Phantom Processes

Read logout notification information.
Start a phantom process.
Switch logout notification on or off.

LONSR
PHNTMS
LONSCN

Process Suspension

Suspend a process for a specified interval.
Suspend a process (interruptible).

SLEEPS
SLEPSI

First Edition FX-15

Subroutines Reference V: Event Synchronization

Query User

Ask question and obtain a YES or NO answer.

Prompt and read a name.
Prompt and read a number (binary, decimal, octal, or hexadecimal).

YSNOSA
RNAMSA
RNUMSA

Randomizing

Generate random number and update "seed," based upon a 32-bit
word size and using the Linear Congruential Method.

Initialize random number generator "seed."

RANDSA

RNDISA

Search Rules

Add a rule to the beginning of a search list or before a specified rule.
Add a rule to the end of a search list or after a specified rule.
Create a search list.
Delete a search list.
Determine if a search rule exists.
Disable an optional search rule. Used to disable rules that have been

enabled using SRSENABL.
Disable an optional search rule. Used to disable rules that have been

enabled using SRSENABL.

Enable an optional search rule. Enabled rules can be disabled using
SRSDSABL or SRSABSDS.

Free list structure space allocated by SRSLIST or SRSREAD.
Initialize all search lists to system defaults.
Locate a file using a search list and open the file. Create a file if the

file sought does not exist.
Locate a file using a search list and a list of suffixes. Open the

located file, or create a file if the file sought does not exist.
Read the next rule from a search list.

SRSADDB
SRSADDE

SRSCREAT
SRSDEL

SRSEXSTR
SRSABSDS

SRSDSABL

SRSENABL

SR$FR_LS
SRSINIT

OPSRS

OPSRSS

SRSNEXTR

FX-16 First Edition

Index of Subroutines by Function

Read all of the rules in a search list.
Remove a search rule from a search list.
Return the names of all defined search lists.
Set the locator pointer for a search rule.
Set a search list using a user-defined search rules file.

SRSREAD
SRSREM
SRSLIST
SRSSETL
SRSSSR

Semaphores

Drain a semaphore.
Notify a semaphore.
Open a set of named semaphores.
Open a set of named semaphores.
Periodically notify a semaphore.
Release (close) a named semaphore.
Return number of processes waiting on a semaphore.
Wait on a semaphore.
Wait on a specified named semaphore, with timeout.

SEMSDR
SEMSNF
SEMSOP
SEMSOU
SEMSTN
SEMSCL
SEMSTS

SEMSWT
SEMSTW

Server Names

Catalog a server's Low Level Name.
Get the process numbers of all processes associated with the server

name.
Get the server name of a process.
List the server names on your system.
Look up a server's Low Level Name.
Recatalog a server's Low Level Name.
Uncatalog a server's Low Level Name.

ISNSC
SRSSGP

SRSSGN
SRSSLN

ISNSL
ISNSRC
ISNSUC

First Edition FX-17

Subroutines Reference V: Event Synchronization

Sorting

Binary search or build binary table.
Bubble sort.
Close merged input files.
Close all sort units.

Diminishing increment sort.
Get input records.
Get sorted records.

Heap sort.
Insertion sort.

Merge sorted files.
Partition exchange sort.

Prepare sort table and buffers.
Radix exchange sort.
Return next merged record to sort.
Sort one file on ASCII key(s).
Sort (multiple key types) or merge sorted files.
Sort one or several input files.

Sort tables prepared by SETUSS.

BNSRCH
BUBBLE

MRG3SS
CLNUSS

SHELL

RLSESS
RTRNSS

HEAP

INSERT
MRG1SS

QUICK
SETUSS

RADXEX

MRG2SS
SUBSRT

ASCSSS
SRTFSS

CMBNSS

Strings

Compare two strings for equality.
Compare two substrings for equality.
Compare two character strings.
Convert UIDSBT output into character string.
Determine the operational length of a string.
Determine string type.
Fill a string with a character.
Fill a substring with a given character.

CSTRSA
CSUBSA

NAMEQS
UIDSCH
NLENSA
TYPESA
FILLSA

FSUBSA

FX-18 First Edition

Index of Subroutines by Function

Get a character from a packed string.

Left-justify, right-justify, or center a string within a field.
Locate one string within another.
Locate one substring within another.
Move a character between packed strings.
Move one string to another.
Move one substring to another.
Return unique bit string.
Rotate string left or right.
Rotate substring left or right.
Shift string left or right.
Shift substring left or right.
Test for pathname.

GCHRSA
JSTRSA
LSTRSA
LSUBSA

MCHRSA
MSTRSA
MSUBSA
UIDSBT
RSTRSA
RSUBSA
SSTRSA
SSUBSA
TREESA

System Information
General System Information

Check validity of system name passed to it.
Determine access to a segment.
Determine if routine is dynamically accessible.
Indicate if Login-over-login permitted.
Return cold-start setting of ABBREV switch.
Return current date and time.
Return current PRIMOS system name.
Return information on the system's list of logical disks.
Return model number of Prime computer.
Return operating system revision number.
Return PRIMOS II information.
Return text representation of error code.
Return text representation of error code for specified PRIMOS

subsystem.
Return user number and count of users.

SNCHKS
RSEGACS
CKDYNS
LOVSSW
ABSSWS

DATES
GSNAMS

LDISKS
CPUIDS
PRISRV
GINFO

ERTXTS
ERSTEXT

USERS

First Edition FX-19

Subroutines Reference V: Event Synchronization

System Time Information

Return CPU time since login.
Return disk time since login.
Return time of day.
Return today's date, American style.
Return today's date as day of year (Julian date).
Return today's date, European (military) style.

System Status and Metering Information

CTIMSA
DTIMSA
TIMESA
DATESA
DOFYSA

EDATSA

^ >

Return data about a disk partition.
Return data about file units.
Return data about a process's environment.
Return a variety of metering information.

DSSAVL
DSSUNI
DSSENV
GSMETR

Timers

Cancel a timer.

Create a timer.

Destroy a timer.
List the identifiers of the timers within a server.
Return the timer type and information.
Set an absolute timer.
Set an interval timer.
Set and read various timers.
Set a repetitive timer.

TMRSCANL
TMRSCREA
TMRSDEST
TMRSLIST

TMRSGTMR
TMRSSABS
TMRSSINT

LIMITS
TMRSSREP

FX-20 First Edition

Index of Subroutines by Function

User Information

Change login validation password.
Check that a process has a given amount of timeslice left.
Convert local time to Universal Time.
Convert Universal Time to local time.
Determine whether a forced logout is in progress.

Display PRIMOS command prompt.
Display standard message showing times used.
Expand a line using abbreviations preprocessor.
Generate a new login validation password.
List the disks a given user is using.
List users with same name as caller.

Log out a user.
Return amount of CPU time used since login.
Return current system time.
Return a list of devices that a user can access.
Return permanent time information.
Return timing information and user identification.
Return the user's project identifier.
Return user number of initiating process.
Return user type of current process.
Test whether current user is supervisor.
Validate a name.
Validate syntax of a password.
Validate a name against composite identification.

CHGSPW
ASSURS

TMRSLOCALCONVERT
TMRSUNIVCONVERT

INSLO
READYS
TISMSG

COMSAB
GENSPW
LUDSKS
UNOSGT
LOGOSS
PTIMES

TMRSGTIM
LUDEVS

TMRSGINF
TIMDAT
PRJIDS
SIDSGT
UTYPES

SUSRS
IDCHKS

PWCHKS
VALIDS

First Edition FX-21

Subroutines Reference V: Event Synchronization

User Terminal
Functions

Control functions for user terminal.
Get next character from terminal or command file.
Get next character from command line until carriage return.
Inhibit or enable CONTROL-P.

Input decimal number.
Input an octal number.
Input a hexadecimal number.
Move characters from terminal or command file to memory.

Output ASCII to the user terminal or ASR punch.
Output count characters to the user terminal followed by a line feed

and carriage return.

Output count characters to the user terminal.
Output the 16-bit integer num to the terminal.
Output char to the user terminal. The data type must be a 16-bit

integer in F77.

Output a six-character signed decimal number.
Output a six-character unsigned octal number.
Output a four-character unsigned hexadecimal number.
Output carriage return and line feed.
Read a line of text from the terminal or from a command file.
Read or set erase and kill characters.

Read one character from the user terminal into Register A.
Read one character from the user terminal.
Write one character from Register A to the user terminal.

CSA01
C1IN

C1INS

BREAKS
TIDEC
TIOCT
TIHEX

CNINS
OSAA01

TNOU

TNOUA

TOVFDS
TlOU

TODEC
TOOCT
TOHEX

TONL
COMANL

ERKLSS
TUB
TUN
TlOB

FX-22 First Edition

Index of Subroutines by Function

Input from User Terminal

Parse a command line.
Read a character.
Read a character.
Read a character, suppressing echo.
Read a character (function).

Read a character (procedure).
Read a decimal number.
Read a hexadecimal number.
Read a line.
Read a line into a PRIMOS buffer.
Read an octal number.
Read a specified number of characters.

RDTKSS
C1IN

C1INS
C1NES

TUB

TUN
TIDEC
TIHEX

CLSGET
COMANL

TIOCT

CNINS

Output to User Terminal

Print a standard error message from PRIMOS or a PRIMOS
subsystem.

Print a standard error message.
Provide free-format output.
Provide free-format output for error messages.
Write characters to terminal, followed by NEWLINE.
Write characters to terminal.
Write a signed decimal number.
Write a hexadecimal number.
Write a NEWLINE.
Write an octal number.
Write a decimal number without spaces.
Write one character from Register A.
Write one character.

ERSPRINT

ERRPRS
IOAS

IOASER
TNOU

TNOUA
TODEC
TOHEX

TONL
TOOCT

TOVFDS
TlOB
TlOU

First Edition FX-23

Subroutines Reference V: Event Synchronization

Control Output to User Terminal

Check for unread terminal input characters.
Gear the terminal input and output buffers.
Control the way PRIMOS treats the user terminal.
Determine if there are pending quits.
Inhibit or enable BREAK function.
Read or set the erase and kill characters.
Return information about command output settings.
Switch input between the terminal and a file.
Switch output between the terminal and a file.

TTYSIN
TTYSRS
DUPLXS

QUITS
BREAKS
ERKL$$
COSGET
COMI$$

COMOSS

FX-24 First Edition

Index of Subroutines by Name

ASxy series FORTRAN compiler addition functions.
ABSSWS Return cold-start setting of ABBREV switch.
ACSCAT Add an object's name to an access category.
ACSCHG Modify an existing ACL on an object.
ACSDFT Set an object's ACL to that of its parent

directory.
ACSLIK Set an object's ACL like that of another object.
ACSLST Obtain the contents of an object's ACL.
ACSRVT Convert an object from ACL protection to

password protection.
ACSSET Set a specific ACL on an object.
ALCSRA Allocate space for EPF function return

information.
ALOCSS Allocate memory on the current stack.
ALSSRA Allocate space and set value of EPF function.
APSFXS Append a specified suffix to a pathname.
ASCSSS Sort or merge sorted files (multiple file types

and key types). (V-mode)
ASCSSS Sort or merge sorted files (multiple file types

and key types). (R-mode)
ASCSRT Synonym for ASCSSS. See above.
ASSLIN Return asynchronous line number.
ASSLST Retrieve asynchronous line characteristics.
ASNLNS Assign AMLC line.
ASSSET Set asynchronous line characteristics.
ASSURS Check process has given amount of timeslice

left.
ATS Set the attach point to a directory specified by

pathname.
ATSABS Set the attach point to a specified top-level

directory and partition.
ATSANY Set the attach point to a specified top-level

directory on any partition.
ATSHOM Set the attach point to the home directory.

B-7
III 2-3
II 2-3
II 2-5
II 2-7

II 2-9
II 2-11
II 2-13

II 2-15
III 4-16

III 4-3
III 4-21
II 4-4
I V 17-12

IV 17-42

IV 8-32
IV 8-26
IV 8-21
IV 8-33
III 2-22

II 3-3

II 3-6

II 3-8

II 3-10

First Edition SX-1

Subroutines Reference V: Event Synchronization

ATSLDEV Set the attach point by top-level directory and II 3-11
logical disk number.

ATSOR Set the attach point to the login directory.
ATSREL Set the attach point relative to the current

directory.
ATCHSS Set the attach point to a specified directory.
ATTDEV Change a device assignment temporarily.

BINSSR Perform binary search in ordered table.
BNSRCH Binary search.
BREAKS Inhibit or enable BREAK function.
BUBBLE Bubble sort.

CSxy series FORTRAN compiler conversion functions.
CSA01 Control functions for user terminal.
CSM05 Control functions for 9-track tape.
CSM10 Control functions for 7-track tape.
CSM11 Control functions for 7-track tape (BCD).
CSM13 Control functions for 9-track tape (EBCDIC).
CSP02 Control functions for paper tape.
C1IN Read a character.
C1INS Read a character.
ONES Read a character, suppressing echo.
CALACS Determine whether an object is accessible for a

given action.
CASE$A Convert between upper- and lowercase.
CATSDL Delete an access category.
CESBRD Return caller's maximum command environment

breadth.
CESDPT Return caller's maximum command environment II 6-4

depth.
CFSEXT Extend or truncate a CAM file.
CFSREM Get a CAM file's extent map.
CFSSME Set a CAM file's extent length value.
CHSFX1 Convert string (decimal) to 16-bit integer.
CHSFX2 Convert string (decimal) to 32-bit integer.
CHSHX2 Convert string (hexadecimal) to 32-bit integer.
CH$MOD Change the open mode of an open file.
CHSOC2 Convert string (octal) to 32-bit integer.
CHGSPW Change login validation password.
CKDYNS Determine if routine is dynamically accessible.
CL$FNR Close a file by name and return a bit string

indicating closed units.
C L S G E T R e a d a l i n e . I l l

II 3-13
II 3-15

II A-2
IV 3-6

III 6-21
IV 17-48
III 3-50
IV 17-50

I B-5
IV 6-5
IV E-5
IV E-5
IV E-5
IV E-5
IV 6-12
III 3-5
III 3-7
III 3-9
II 2-17

IV 14-2
II 2-19
II 6-3

II 4-130
II 4-132
II 4-135
III 6-3
III 6-5
III 6-7
II 4-6
III 6-9
III 2-23
III 2-4
II 4-7

3-10

SX-2 First Edition

Index of Subroutines by Name

CLSPIX Parse command line according to a command
line picture.

CLINEQ Solve linear equations (complex).
CLNUSS Close all sort units after SRTFS.
CLOSFN Close a file system object by pathname.
CLOSFU Close a file system object by file unit number.
CLOSSA Close a file.
CMADD Matrix addition (complex).
CMADJ Calculate adjoint matrix (complex).
CMBNSS Sort tables prepared by SETUS.
CMCOF Calculate signed cofactor (complex).
CMCON Set constant matrix (complex).
CMDET Calculate matrix determinant (complex).
CMDLSA Parse a command line.
CMIDN Set matrix to identity matrix (complex).
CMINV Calculate signed cofactor (complex).
CMLVSE Call new command level after an error.
CMMLT Matrix multiplication (complex).
CMSCL Multiply matrix by scalar (complex).
CMSUB Matrix subtraction (complex).
CMTRN Calculate transpose matrix (complex).
CNAMSS Change the name of an object in the current

directory.
CNTNS Read a specified number of characters.
CNSIGS Continue scan for on-units.
CNVASA Convert ASCII number to binary.
CNVBSA Convert binary number to ASCII.
COSGET Return information about command output

settings.
COMSAB Expand a line using Abbreviations preprocessor.
COMANL Read a line into a PRIMOS buffer.
COMB Generate matrix combinations.
COMISS Switch input between the terminal and a file.
COMLVS Call a new command level.
COMOSS Switch output between the terminal and a file.
CONTRL Perform device-independent control functions.
CP$ Invoke a command from a running program.
CPUIDS Return model number of Prime computer.
CREASS Create a new subdirectory in the current

directory.
CREPWS Create a new password directory.
CSTRSA Compare two strings for equality.
CSUBSA Compare two substrings for equality.
CTIMSA Return CPU time since login.
CVSDQS Convert binary date to quadseconds.

II 6-5

IV 18-7
IV 17-29
II 4-9
II 4-10
IV 15-2
IV 18-9
IV 18-11
IV 17-27
IV 18-13
IV 18-16
IV 18-18
I V 16-2
IV 18-20
IV 18-22
III 5-5
IV 8-24
IV 18-26
IV 18-28
IV 18-30
II 4-11

III 3-13
III 7-19
IV 14-4
IV 14-6
III 3-52

III 2-25
III 3-15
I V 18-5
III 3-53
III 5-6
III 3-55
I V 4-11
II 6-9
III 2-5
II A-5

II A-7
I V 10-2
IV 10-4
IV 12-2
III 6-12

First Edition SX-3

Subroutines Reference V: Event Synchronization

CVSDTB Convert ASCII date to binary format.
CVSFDA Convert binary date to ISO format.
CVSFDV Convert binary date to "visual" format.
CVSQSD Convert quadsecond date to binary format.

D$xy series FORTRAN compiler division functions.
DSINIT Initialize disk.
DATES Return current date and time.
DATES A Return today's date, American style.
DELESA Delete a file.
DIRSCR Create a new directory.
DIRSLS Search for specified types of entries in a

directory open on a file unit.
DIRSRD Read sequentially the entries of a directory open

on a file unit.
DIRSSE Return directory entries meeting caller-specified

selection criteria.
DISPLY Update sense light settings.
DKGEOS Register disk format with driver.
DLINEQ Solve a system of linear equations (double

precision).
DMADD Matrix additions (double precision).
DMADJ Calculate adjoint matrix (double precision).
DMCOF Calculate signed cofactor (double precision).
DMCON Set matrix to constant matrix (double precision).
DMDET Calculate determinant (double precision).
DMIDN Set matrix to identity matrix (double precision).
DMINV Calculate inverted matrix (double precision).
DMMLT Matrix multiplication (double precision).
DMSCL Multiply matrix by a scalar (double precision).
DMSUB Matrix subtraction (double precision).
DMTRN Calculate transpose matrix (double precision).
DOFY$A Return today's date as day of year (Julian).
DSSAVL Return data about a disk partition.
DSSENV Return data about a process's environment.
DSSUNI Return data about file units.
DTIMSA Return disk time since login.
DUPLXS Control the way PRIMOS treats the user

terminal.
DYSSGS Return maximum number of dynamic segments.

ni 6-13
in 6-15
in 6-17
in 6-19

i B-7
IV 5-13
in 2-8
IV 12-3
IV 15-3
ii 4-15
ii 4-17

ii 4-24

ii 4-29

in 10-3
IV 5-18
IV 18-7

IV 18-9
IV 18-11
IV 18-13
IV 18-16
IV 18-18
IV 18-20
IV 18-22
IV 18-24
IV 18-26
IV 18-28
IV 18-30
IV 12-4
in 2-51
in 2-53
in 2-57
IV 12-5
III 3-57

III 4-25

E$xy series FORTRAN compiler exponentiation
ECLSCC Supervise editing of input from terminal or

command file (callable from C).

I B - 8
III 3-28a

SX-4 First Edition

Index of Subroutines by Name

ECLSCL Interface to ECLSCC (for non-C programs).
EDATSA Today's date, European (military) style.
ENCDSA Make a number printable if possible.
ENCRYPTS Encrypt login validation passwords.
ENTSRD Return the contents of a named entry in a

directory open on a file unit.
EPFSALLC Perform the linkage allocation phase for an EPF.
EPFSCPF Return the state of the command processing

flags in an EPF
EPFSDEL Deactivate the most recent invocation of a

specified EPF.
EPFSINIT Perform the linkage initialization phase for an

EPF.
EPFSINVK Initiate the execution of a program EPF.
EPFSMAP Map the procedure images of an EPF file into

virtual memory.
EPFSRUN Combine functions of EPFSALLC, EPFSMAP,

EPFSINIT, and EPFSINVK.
EQUALS Generate a filename based on another name.
ERKLSS Read or set the erase and kill characters.
ERSPRINT Print error messages on terminal.
ERRPRS Print a standard error message.
ERRSET Set ERRVEC (a system error vector).
ERSTEXT Return error message to a variable.
ERTXTS Return text associated with error code.
EXSCLR Disable signalling of EXITS condition.
EXSRD Return state of EXITS signalling.
EXSSET Enable signalling of EXITS condition.
EXIT Return to PRIMOS.
EXSTSA Check for file existence.
EXTRSA Return an object's entryname and parent

directory pathname.

I l l 3-28d
IV 12-6
IV 14-8
III 6-24
II 4-37

II 5-3
II 5-5

II 5-7

II 5-9

II 5-11
II 5-15

II 5-19

II 4-39
III 3-60
III 3-31
III 10-3a
III 10-4
III 2-8a
III 10-5b
III 7-35
III 7-36
III 7-37
III 5-7
IV 15-4
II 4-41

FSxxyy series FORTRAN compiler floating-point functions.
FDATSA Convert the DATMOD field returned by

RDENSS to DAY MON DD YYYY.
FEDTSA Convert the DATMOD field returned by

RDENSS to DAY DD MON YYYY.
FILSDL Delete a file identified by a pathname.
FILLSA Fill a string with a character.
FINFOS Return information about a specified file unit.
FNCHKS Verify a supplied string as a valid filename.

IV
B-8
14-10

IV 14-12

II 4-43
IV 10-6
II 4-45
II 4-49

First Edition SX-5

Subroutines Reference V: Event Synchronization

FORCEW Force PRIMOS to write modified records to
disk.

FRESRA Deallocate space for EPF function return
information.

FSUBSA Fill a substring with a given character.
FTIMSA Convert the TIMMOD field returned by

REDNSS.

II 4-51

III 4-23

IV 10-7
IV 14-14

GSMETR Return system metering information.
GCHAR Get a character from an array.
GCHRSA Get a character from a packed string.
GENDSA Position to end of file.
GENSPW Generate a login validation password.
GETERR Return ERRVEC contents.
GETIDS Obtain the user ID and the groups to which it

belongs.
GINFO Return PRIMOS II information.
GPASSS Obtain the passwords of a subdirectory of the

current directory.
GPATHS Return the pathname of a specified unit, attach

point, or segment.
GSNAMS Return current PRIMOS system name.
GTSPAR Parse character string into tokens.
GTROBS Find out whether current attach point is on a

robust partition.
GVSGET Retrieve the value of a global variable.
GVSSET Set the value of a global variable.

H$xy series FORTRAN compiler complex number storage.
HEAP Heap sort .

ISAA01 Read ASCII from terminal.
ISAA12 Read ASCII from terminal or input stream by

REDNSS.
ISAC03 Input from parallel card reader.
ISAC09 Input from serial card reader.
ISAC15 Read and print card from parallel card reader.
ISAD07 Read ASCII from disk.
ISAM05 Read ASCII from 9-track tape.
ISAM 10 Read ASCII from 7-track tape.
ISAM11 Read BCD from 7-track tape.
1$AM 13 Read EB CDIC from 9-track tape.
ISAP02 Read paper tape (ASCII).

I l l 2-63
III 6-25
IV 10-9
IV 15-5
III 2-26a
III 10-6
II 2-21

III 2-10
II 2-23

II 4-53

SX-6

III 2-12
III 6-27
II 3-18

II 6-12
II 6-14

I B-5
IV 17-51

IV 6-8
IV 6-10

IV 7-22
IV 7-24
IV 7-26
IV 5-4
IV E-7
IV E-7
IV E-7
IV E-7
IV 6-13

First Edition

Index of Subroutines by Name

ISBD07
ISBM05
ISBM10
ICES
IDCHKS
IMADD
IMADJ
IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL
IMSUB
IMTRN
INSLO
INSERT
IOAS
IOASER
IOASRS
IOCSSF
IOCSSG
ISACLS
ISSAB
ISSAS
ISSCE
ISSFB
ISSGE
ISSGRQ
ISSGRS
ISSGSA
ISSGSO
ISSGSS
ISSRM
ISSRS
ISSSM
ISSSTA
ISSTS
ISNSC
ISNSL
ISNSRC
ISNSUC
ISREMS

R e a d b i n a r y f r o m d i s k . I V 5 - 8
R e a d b i n a r y f r o m 9 - t r a c k . I V E - 7
R e a d b i n a r y f r o m 7 - t r a c k . I V E - 7
Init ial ize the command environment. I l l 5-8
V a l i d a t e a n a m e . I l l 2 - 2 7
M a t r i x a d d i t i o n (i n t e g e r) . I V 1 8 - 9
Calcu la te ad jo in t mat r ix (in teger) . IV 18-11
Calculate signed cofactor (integer). IV 18-13
Set matrix to constant matrix (integer). IV 18-16
Calculate matrix determinant (integer). IV 18-18
Set matrix to identity matrix (integer). IV 18-20
M a t r i x m u l t i p l i c a t i o n (i n t e g e r) . I V 1 8 - 2 4
Multiply matrix by scalar (integer). IV 18-26
M a t r i x s u b t r a c t i o n (i n t e g e r) . I V 1 8 - 2 8
Calculate transpose matrix (integer). IV 18-30
Determine if a forced logout is in progress. Ill 2-28
I n s e r t i o n s o r t . I V 1 7 - 5 2
P r o v i d e f r e e - f o r m a t o u t p u t . I l l 3 - 3 2
Provide free-format output for error messages. Ill 3-38
Perform free-format output to a buffer. Ill 6-32
F r e e l o g i c a l u n i t . I V 3 - 4
G e t l o g i c a l u n i t . I V 3 - 2
Determine whether an object is ACL-protected. II 2-25
A l l oca te an ISC message bu f f e r. V 10 -5
A c c e p t a n I S C s e s s i o n . V 8 - 9
C l e a r a n I S C s e s s i o n e x c e p t i o n . V 11 - 7
F r e e a n I S C m e s s a g e b u f f e r . V 1 0 - 7
G e t a n I S C s e s s i o n e x c e p t i o n . V 11 - 5
G e t a n I S C s e s s i o n r e q u e s t . V 8 - 6
Get an ISC session request response. V 8-12
G e t I S C s e s s i o n a t t r i b u t e s . V 1 4 - 4
Get list of ISC sessions owned by this server. V 14-2
Get ISC session status information. V 14-7
R e c e i v e a n I S C m e s s a g e . V 1 0 - 1 2
R e q u e s t a n I S C s e s s i o n . V 8 - 3
S e n d a n I S C m e s s a g e . V 1 0 - 9
Get ISC current session stat ist ics. V 14-10
T e r m i n a t e a n I S C s e s s i o n . V 1 1 - 3
Catalog server 's Low Level Name. V 7-5
Look up server's Low Level Name. V 7-7
Recatalog server's Low Level Name File. V 7-8
Uncatalog (delete) server's Low Level Name. V 7-9
Determine whether an open file system object is II 4-56

local or remote.

First Edition SX-7

Subroutines Reference V: Event Synchronization

JSTRSA Left-justify, right-justify, or center a string. IV 10-10

KLMSIF Enable a program to obtain serialization data
from a specified file.

5-8a

L$xy series FORTRAN compiler complex number loading.
LDISKS Return information on the system's list of logical

disks.
LIMITS Set and read various timers.
LINEQ Solve a system of linear equations (single

precision).
LISTSCMD Return a list of commands valid at mini-

command level.
LNSSET Modify user's search rules to permit dynamic

linking to EPF library.
LOGOSS Log out a user.
LONSCN Switch logout notification on or off.
LONSR Read logout notification information.
LOVSSW Indicate if the Login-over-login function is

currently permitted.
LSTRSA Locate one string within another.
LSUB$A Locate one substring within another.
LUDEVS Return a list of devices that a user can access.
LUDSKS List the disks a given user is using.
LVSGET Retrieve the value of a CPL local variable.
LVSSET Set the value of a CPL local variable.

M$xy series FORTRAN compiler multiplication routines.
MADD Matrix addition (single precision).
MADJ Calculate adjoint matrix (single precision).
MCHRSA Move a character from one packed string to

another.
MCOF Calculate signed cofactor (single precision).
MCON Set matrix to constant matrix (single precision).
MDET Calculate matrix determinant (single precision).
MGSETS Set the receiving state for messages.
MIDN Set matrix to identity matrix (single precision).
MINV Calculate inverted matrix (single precision).
MKLBSF Convert FORTRAN statement label to PLA

format.
MKONSF Create an on-unit (for FTN users).
MKONSP Create an on-unit (for any language except

FTN).

B-5
II 4-58

III 8-36
IV 18-7

II 6-16

II 5-26

III 2-29
III 5-20
III 5-21
III 2-13

IV 10-12
IV 10-14
III 2-31
II 4-61
II 6-18
II 6-20

I B-8
IV 18-9
IV 18-11
IV 10-16

IV 18-13
IV 18-16
IV 18-18
III 9-5
I V 18-20
IV 18-22
III 7-20

III 7-21
III 7-23

SX-8 First Edition

Index of Subroutines by Name

MKONUS Create an on-unit (for PMA and PL/I users).
MMSMLPA Make the last page of a segment available.
MMSMLPU Make the last page of a segment unavailable.
MMLT Matrix multiplication (single precision).
MOVEWS Move a block of memory.
MRG1SS Merge sorted files.
MRG2S Return next merged record.
MRG3SS Close merged input files.
MSCL Matrix addition (single precision).
MSGSST Return the receiving state of a user.
MSTRSA Move one string to another.
MSUB Matrix subtraction (single precision).
MS UB$A Move one substring to another.
MTRN Calculate transpose matrix (single precision).

N$xy series FORTRAN compiler negation functions.
NAMEQS Compare two character strings.
NLENSA Determine the operational length of a string.
NTSLTS Return characteristics of PRIMOS network

terminal service line.

OSAA01 Write ASCII to terminal or command stream.
OSAC03 Parallel interface to card punch.
OSAC15 Parallel interface punch and print.
OSAD07 Write compressed ASCII to disk.
OSAD08 Write ASCII uncompressed to disk.
OSALxx Interface to various printer controllers.
OSAL04 Centronics line printer.
OSAL06 Parallel interface to MPC line printer.
OSAL14 Versatec printer/plotter interface.
OSAM05 Write ASCII to 9-track tape.
OSAM10 Write ASCII to 7-track tape.
OSAM11 Write BCD to 7-track tape.
OSAM13 Write EBCDIC to 9-track tape.
OSBD07 Write binary to disk.
OSBM05 Write binary to 9-track tape.
OSBM10 Write binary to 7-track tape.
OSBP02 Punch paper tape (binary).
OPENSA Open supplied filename.
OPNPSA Read filename and open.
OPNVSA Open filename with verification and delay.
OPSRS Locate a file using a search list and open the

file.

I l l 7-25
III 4-4a
III 4-4b
IV 18-24
i n 6-34
IV 17-33
IV 17-37
IV 17-38
IV 18-26
n i 9-3
IV 10-18
IV 18-28
IV 10-20
IV 18-30

i B-5
in 6-35
IV 10-22
IV 8-36

IV 6-6
IV 7-31
IV 7-32
IV E-2
IV 5-10
IV 7-1
IV 7-3
IV 7-3
IV 7-13
IV E-7
IV E-7
IV E-7
IV E-7
IV 5-6
IV E-7
IV E-7
IV 6-15
IV 15-6
IV 15-8
IV 15-10
II 7-4

First Edition SX-9

Subroutines Reference V: Event Synchronization

OPSRSS

OPVPSA
OVERFL

Locate a file using a search list and a list of
suffixes.

Read filename and open, or verify and delay.
Check if an overflow condition has occurred.

II

IV
III

7-10

15-13
10-7

PUB Input character from paper tape reader to
Register A.

PUN Input character from paper tape to variable.
PlOB Output character from Register A to paper-tape

punch.
PlOU Output character from variable to paper-tape

punch.
PASDEL Remove an object's priority access.
PASLST Obtain the contents of an object's priority ACL.
PASSET Set priority access on an object.
PARSRV Return a logical value indicating ACL and quota

support.
PERM Generate matrix permutations.
PHANTS Start a phantom process.
PHNTMS Start up a phantom process.
PL1SNL Perform a nonlocal GOTO.
POSNSA Position file.
PRERR Print an error message.
PRISRV Return operating system revision number.
PRJIDS Return the user's project identifier.
PRWFSS Read, write, position, or truncate a file.
PTIMES Return amount of CPU time used since login.
PWCHKS Validate syntax of a password.

QSREAD Return directory quota and disk record usage
information.

QSSET Set a quota on a subdirectory of the current
directory.

QUICK Partition exchange sort.
QUITS Determine if there are pending quits.

RADXEX Radix exchange sort.
RAND$A Generate random number and update seed, using

32-bit word size and the linear congruential
method.

RD$CE_DP Return caller's current command environment
breadth.

RDASC Read ASCII from any device.

IV 6-17

IV
IV

6-19
6-18

IV 6-20

SX-10

II 2-27
II 2-28
II 2-30
II 4-63

IV 18-32
III 10-8
III 5-23
III 7-27
IV 15-17
III 10-9
III 2-15
III 2-34
II 4-65
III 2-35
III 2-36

II 4-74

II 4-77

IV 17-54
III 3-62

IV 17-55
IV 13-2

II 6-22

I V 4-5

First Edition

Index of Subroutines by Name

RDBIN Read binary from any device.
RDENSS Position in or read from a directory.
RDLINS Read a line of characters from a compressed

ASCII disk file.
RDTKSS Parse a command line.
READYS Display PRIMOS command prompt.
RECYCL Tell PRIMOS to cycle to the next user.
REMEPFS Remove an EPF from a user's address space.
RESTSS Restore an R-mode executable image.
RESUSS Restore and resume an R-mode executable

image.
RLSESS Get input records after SETUS.
RMSGDS Receive a deferred message.
RNAMSA Prompt, read a pathname, and check format.
RNDISA Initialize random number generator seed.
RNUMSA Prompt and read a number (in any format).
RPL$ Replace one EPF runfile with another.
RPOSSA Return position of file.
RRECL Read disk record.
RSEGACS Determine access to a segment.
RSTRSA Rotate string left or right.
RSUBSA Rotate substring left or right.
RTRNSS Get sorted records.
RVONSF Revert an on-unit (for FTN users).
RVONUS Revert an on-unit (for any language except

FTN).
RWNDSA Reposition file.

IV 4-9
II A-9
II 4-80

III 3-16
III 2-37
III 10-18
II 5-22
III 5-13
III 5-15

I V 17-26
III 9-7
IV 11-2
IV 13-4
IV 11-4
II 5-24
IV 15-18
IV 5-14
III 2-16
IV 10-23
IV 10-26
IV 17-28
III 7-28
III 7-29

IV 15-19

SSxy series FORTRAN compiler subtraction routines.
SATRSS Set or modify an object's attributes.
SAVESS Save an R-mode executable image.
SCHAR Store a character into an array location.
SEMSCL Release (close) a named semaphore.
SEMSDR Drain a semaphore.
SEMSNF Notify a semaphore.
SEMSOP Open a set of named semaphores.
SEMSOU Open a set of named semaphores.
SEMSTN Periodically notify a semaphore.
SEMSTS Return number of processes waiting on a

semaphore.
SEMSTW Wait on a specified named semaphore, with

timeout.
SEMSWT Wait on a semaphore.
SETRCS Record command error status.

II
III
III
III
III
III
III
III
III
III

III

III
III

B-8
4-82
5-17
6-37
8-17
8-19
8-21
8-23
8-23
8-27
8-29

8-31

8-33
5-9

First Edition SX-11

Subroutines Reference V: Event Synchronization

SETUSS Prepare sort table and buffers for CMBNS.
SGDSDL Delete a segment directory.
SGDSEX Find out if there is a valid entry at the current

position within the segment directory on a
specified unit.

SGDSOP Open a segment directory entry.
SGDRSS Position, read, or modify a segment directory.
SGNLSF Signal a condition.
SHELL Diminishing increment sort.
SID$GT Return user number of initiating process.
SIGNLS Signal a condition.
SIZES Return the size of a file system entry.
SLEEPS Suspend a process for a specified interval.
SLEPSI Suspend a process (interruptible).
SLITE Set the sense light on or off.
SLITET Test sense light settings.
SMSGS Send an interuser message.
SNCHKS Check validity of system name passed to it.
SP$REQ Insert a file into the spool queue.
SPASSS Set the owner and nonowner passwords on an

object.
SPOOLS Insert a file in spooler queue.
SRSABSDS Disable an optional search rule enabled by

SRSENABL.
SRSADDB Add a rule to the start of a search list or before a

specified rule within the list.
SRSADDE Add a rule to the end of a search list or after a

specified rule within the list.
SRSCREAT Create a search list.
SRSDEL Delete a search list.
SRSDSABL Disable an optional search rule enabled by

SRSENABL.
SRSENABL Enable an optional search rule.
SRSEXSTR Determine if a search rule exists.
SRSFRJLS Free list structure space allocated by SRSLIST or

SRSREAD.
SRSINIT Initialize all search lists to system defaults.
SRSLIST Return the names of all defined search lists.
SRSNEXTR Read the next rule from a search list.
SRSREAD Read all of the rules in a search list.
SRSREM Remove a rule from a search list.
SRSSETL Set the locator pointer for a search rule.
SRSSSR Set a search list via a user-defined search rules

file.
SRCHSS Open, close, delete, or verify existence of an

object.

IV 17-22
II 4-88
II 4-90

II 4-92
II 4-94
III 7-30
IV 17-56
III 2-38
II 7-32
II 4-100
III 8-39
III 8-40
III 10-12
III 10-13
III 9-9
III 2-18
IV 7-12c
II 2-32

IV 7-9
II 7-17

II 7-20

II 7-23

II 7-26
II 7-28
II 7-30

II 7-33
II 7-36
II 7-40

II 7-42
II 7-44
II 7-48
II 7-53
II 7-57
II 7-60
II 7-63

II 4-103

SX-12 First Edition

Index of Subroutines by Name

r
SRSSGN Get server name.
SRSSGP Get process numbers of all processes that have

same server name.
SRSSLN List all active server names.
SRSFXS Search for a file with a list of possible suffixes.
SRTFSS Sort several input files.
SSSERR Signal an error in a subsystem.
SSTRSA Shift string left or right.
SSUBSA Shift substring left or right.
SSWTCH Test sense switch settings.
STSSGS Return maximum number of static segments.
STRSAL Allocate user-class dynamic memory.
STRSAP Allocate process-class dynamic memory.
STRSAS Allocate subsystem-class dynamic memory.
STRSAU Allocate user-class dynamic memory.
STRSFP Free process-class dynamic memory.
STR$FR Free user-class dynamic memory.
STRSFS Free subsystem-class dynamic memory.
STRSFU Free user-class dynamic memory.
SUBSRT Sort file on ASCII key (V-mode).
SUBSRT Sort file on ASCII key (R-mode).
SUSRS Test if current user is supervisor.
SYNSCHCK Return total of notices or waiters on a

synchronizer.
SYNSCREA Create an event synchronizer.
SYNSDEST Destroy an event synchronizer.
SYNSGCHK Return total of notices or waiters on an event

group.
SYNSGCRE Create an event group.
SYNSGDST Destroy an event group.
SYNSGLST List total of groups in server and their

identifiers.
SYNSGRTR Retrieve a notice from a group.
SYNSGTWT Perform a timed wait on a group.
SYNSGWT Wait on an event group.
SYNSINFO Return information about a synchronizer.
SYNSLIST List total of synchronizers in server and their

identifiers.
SYNSLSIG List total of synchronizers in group and their

identifiers.
SYNSMVTO Move a synchronizer into a group.
SYNSPOST Post a notice on a synchronizer.
SYNSREMV Remove a synchronizer from a group.
SYNSRTRV Retrieve a notice from an event synchronizer.
SYNSTMWT Perform a timed wait on an event synchronizer.
SYNSWAIT Wait on an event synchronizer.

7-10
V 7-11

V 7-13
II 4-112
I V 17-16
III 5-11
IV 10-28
IV 10-30
III 10-14
III 4-26
III 4-5
III 4-7
III 4-8
III 4-10
III 4-11
III 4-12
III 4-13
III 4-14
IV 17-10
IV 17-40
III 2-39
V 4-2

V 2-5
V 2-15
V 4-4

V 3-5
V 3-18
V 4-12

V 3-15
V 3-13
V 3-11
V 4-6
V 4-10

4-8

V 3-7
V 2-7
V 3-9
V 2-13
V 2-11
V 2-9

First Edition SX-13

Subroutines Reference V: Event Synchronization

TSAMLC Communicate with AMLC driver.
TSCMPC Input from MPC card reader.
TSLMPC Move data to LPC line printer.
T$MT Raw data mover for tape.
TSPMPC Raw data mover for card reader.
TSSLCO Communicate with SMLC driver.
T$VG Interface to Versatec printer.
TUB Read a character (function) from PMA into

Register A.
TUN Read a character (procedure).
TlOB Write one character from Register A.
TlOU Write one character.
TEMPSA Open a scratch file.
TEXTOS Check filename for valid format.
TISMSG Display standard message showing times used.
TIDEC Read a decimal number.
TIHEX Read a hexadecimal number.
TIMDAT Return timing information and user

identification.
TIMESA Return time of day.
TIOCT Read an octal number.
TLSSGS Return highest segment number.
TMRSCANL Cancel a timer.
TMRSCREA Create a timer.
TMRSDEST Destroy a timer.
TMRSGINF Return permanent time information.
TMRSGTIM Return current system time.
TMRSGTMR Return information about a timer.
TMRSLIST List total number of timers in server and their

identifiers.
TMRSLOCALCONVERT

Convert local time to Universal Time.
TMRSSABS Set an absolute timer.
TMRSSINT Set an interval timer.
TMRSSREP Set a repetitive timer.
TMRSUNIVCONVERT

Convert Universal Time to local time.
TNCHKS Verify a supplied string as a valid pathname.
TNOU Write characters to terminal, followed by

NEWLINE.
TNOUA Write characters to terminal.
TODEC Write a signed decimal number.
TOHEX Write a hexadecimal number.
TONL Wri te a NEWLINE.
TOOCT Write an octal number.
TOVFDS Write a decimal number without spaces.

SX-14

IV 8-23
IV 7-28
IV 7-6
IV 7-37
IV 7-34
IV 8-3
IV 7-16
III 3-23

III 3-24
III 3-47
III 3-48
IV 15-20
III 10-15
III 2-40
III 3-26
III 3-27
III 2-42

IV 12-7
III 3-28
III 4-27
V 5-15
V 5-6
V 5-8
III 2-43b
III 2-43d
V 5-16
V 5-19

III 2-43e
V 5-9
V 5-11
V 5-13

III 2-43g
II 4-118
III 3-40

III 3-41
III 3-42
III 3-43
III 3-44
III 3-45
III 3-46

First Edition

Index of Subroutines by Name

TREESA
TRNCSA
TSCNSA
TSRCSS

TTYSIN
TTYSRS
TYPESA

UIDSBT
UIDSCH
UNITSA
UNITSS

UNOSGT
UPDATE
USERS
UTYPES

Test for pathname.
Truncate a file.
Scan the file system tree structure.
Open, close, delete, or find a file anywhere in

the file structure.
Check for unread terminal input characters.
Clear the terminal input and output buffers.
Determine string type.

Return unique bit string.
Convert UIDSBT output into character string.
Check for file open.
Return caller's minimum and maximum file unit

numbers.
List users with same name as caller.
Update current directory (PRIMOS II only).
Return user number and count of users.
Return user type of current process.

IV 10-32
IV 15-22
IV 15-23
II A-17

III 3-63
III 3-65
IV 10-35

III 6-39
III 6-40
IV 15-28
II 4-121

III 2-44
III 10-17
III 2-20
III 2-45

VALIDS Validate a name against composite identification. I l l 2-48

WILDS

WRASC
WRBIN
WRECL
WTLINS

Return a logical value indicating whether a
wildcard name was matched.

Write ASCII.
Write binary to any output device.
Write disk record.
Write a line of characters to a compressed ASCII

file.

II 4-122

IV 4-3
IV 4-7
IV 5-17
II 4-124

YSNOSA Ask question and obtain a yes or no answer. IV 11-7

Z$80 Clear double-precision exponent. B-5

First Edition SX-15

Index

r

Index

Absolute timers, 5-1
cancelling, 5-15
creating, 5-7
destroying, 5-8
getting information about, 5-16
setting, 5-3, 5-10
states of, 5-3

ACL groups
null, 13-2
of session initiator, 8-8

Allocate message buffer, 10-5
ARID command, 13-1
AttributeldentityBlock, 14-5, E-2
Authentication

of session initiator, 8-2, 8-6, 8-8
of session recipient, 8-14
possible uses of, 8-8
user ID, 13-1
see also: AttributeldentityBlock,

Initiator AuthBlock,
TargetAuthBlock

B
BIND, ISNS subroutines, 7-3
Buffer

see'. Message buffer
BufferAvailable synchronizer

configuring, 9-6
exception notice on, 10-6
use of, 10-6

Child process
ICE -SERVER, 7-1
server name of, 7-1

Configuration
see: Session configuration

Connect messages, 1-3, 6-3, 12-1
actual length, 12-1
after sending, 12-1
configuration, 9-4, 12-2
during session request, 8-3, 8-6
during session termination, 11-3
maximum length, 9-4

receiving, 8-6, 8-13, 11-5
sending, 8-3, 8-9, 11-3
truncated, 8-7,8-13, 11-6
use of MessageSpecifier, 10-3

Control part, 6-2, 10-3
actual length, 10-3
Connect messages, 6-3, 10-3
Expedited messages, 6-3
location, 10-3
maximum length, 9-4
message array for, 6-5
modifying, 10-11
Normal messages, 6-2
sending, 10-1

Creating a message, 10-1, 10-3

D
Data part, 6-2, 10-4

actual length, 10-4, 10-6
allocate buffer, 10-5
allocated length, 10-5
location, 10-4
maximum length, 9-4
modifying, 10-11
Normal messages, 6-2
sending, 10-1

Data structures
see: Structures

Data transfer
see: Message exchange

Data type equivalents, F-l
Delivery failure

detecting, 11-5
of connect messages, 12-1
recovery from, 13-2
virtual circuit reset, 13-2

ERSPRINT, 1-4
Error messages

ERRD, 1-4, 7-2
for ISNS subroutines, 7-2
for PRIMOS subsystems, 1-4
retrieving, 1-4
see also: Status codes

ErrorMsgHdlr.INS .language, 1-4
ERSTEXT, 1-4
Event groups, 1-1, 2-1, 3-1, 9-12

creating, 3-2, 3-6
destroying, 3-4, 3-18
ExceptionPending synchronizer,

11-2
getting count of synchronizers in,

4-9
getting identifiers of synchronizers

in, 4-9
identifiers of, 3-2
in PL/I sample program, B-l,

B-14
number of priority levels specified

by SYNSGCRE, 3-6
performing a timed wait on, 3-4,

3-14
priority levels of, 3-2
retrieving information about, 4-1,

4-5
retrieving notices from, 3-4, 3-16
subroutines that access, 3-1
system-defined limits for, D-l
waiting on, 2-1, 3-3, 3-12

Event synchronization, 1-1
used by ISC, 1-2
used by timers, 1-2

Event synchronizers, 1-1,2-1
creating, 2-2, 2-6
deallocated by ICE -SERVER,

2-4
destroying, 2-2, 2-4, 2-16
in F77 sample program, B-4
in PL/I sample program, B-l
maximum number of, D-2
moving into event groups, 3-8
moving into groups, 3-3
performing a timed wait on, 2-3,

2-12
posting notices on, 2-3, 2-7
removing from event groups, 3-3,

3-9
retrieving information about, 4-1,

4-6
retrieving notices from, 2-3, 2-14
subroutines that access, 2-2

lndex-1

Subroutines Reference V: Event Synchronization

Event synchronizers (continued)
system-defined limits for, D-l
using, 2-2
waiting on, 2-3, 2-10
see also: ISC synchronizers

ExceptionPending synchronizer, 11-2
configuring, 9-6
if not configured, 11-2
using, 11-6

Exceptions, 6-2, 11-1
clearing, 11-7
Connectmessage, 11-6
delivery failure exception, 11-5,

13-2
getting, 11-5
handling, 11-1
number during session, 14-11
number pending, 14-8
server terminate exception, 11-5
status code, 11-6
system terminate exception, 11-5,

13-2
types, 11-5

Expedited messages, 1-3, 6-3
configuring, 9-4
length, 9-5
number sent & received, 14-11
receiving, 9-12, 10-12
remote session, 13-2
sending, 10-9

For Client Use field (event groups)
possible uses of, 3-8, 9-12
returned by SYNSGRTR, 3-15
returned by SYNSGTWT, 3-4,

3-13 to 3-14
returned by SYNSGWT, 3-3, 3-11

to 3-12
returned by SYNSINFO, 4-6
specified in call to SYNSMVTO,

3-7
specified in call to SYNSMVTO,

3-3
For Client Use field (Low Level

Name)
changing, 7-8
specifying, 7-3
updating, 7-4

use during session request, 8-3,
8-6

FORTRAN
see: FTN

Free message buffer, 10-7
FTN, key values, 6-4, C-l

Global parameters
see: Session configuration

H
High Level Name File

.see: HLNF
HLNF

ACL protection of, 7-3
cataloging LLN in, 7-5
creating, 7-5
deleting, 7-9
filename of, 7-3
looking up LLN in, 7-7

ICE command, 7-1
ICE -SERVER command, 7-1

child processes, 7-1
ISC synchronizers, 9-9
server name, 7-1
session termination, 7-1
SessionRequestPending

synchronizer, 9-8
synchronizer deallocation, 2-4
timer deallocation, 5-3

Include files, 1-3, 6-3
different values for FTN, 2-4, 5-4
for event synchronizers, 2-4
for ISC keys, 6-4, C-3
for ISC structures, 6-4
for server names, 7-2
for SRSS subroutines, 6-4
for timers, 5-4
language support, 6-4

Initialize Command Environment
see: ICE -SERVER command

Initialize server
see: ICE -SERVER command

Initiator
see: Session initiator

Initiator AuthBlock, 8-8, E-2
InterServer Communications

see: ISC
Interval timers, 5-1

cancelling, 5-15
creating, 5-7
destroying, 5-8
getting information about, 5-16
setting, 5-3, 5-12
states of, 5-3

ISSAB, 10-5
ISSAS, 8-9
ISC, 1-1 to 1-2, 6-1

and event groups, 3-1
and synchronizers, 2-1

ISC synchronizers, 1-2, 6-1
configuring, 9-5, 9-7
deallocated by ICE -SERVER,

9-9
destroying, 7-1, 9:8
exception notices on, 11-2
identifiers for, 8-3, 9-9, 14-4
in event groups, 9-12
list session recipient's, 8-9
non-ISC synchronizers, 9-8, 9-12
posting a notice, 6-1, 9-10
retrieving a notice, 6-5, 9-10
too many notices, 9-9
unusable synchronizers, 9-9
unused synchronizers, 9-9
using, 9-10
waiting on, 9-10
see also: Event synchronizers

ISSCE, 11-7
ISC_KEYS.INS.language, 1-4, 6-4
ISC_NETWORK_SERVER, 13-1
ISC.STRUCTURES.INS.language,

1-4
ISSFB, 10-7
ISSGE, 11-5

exception codes, 6-3, C-5
ISSGRQ, 8-6
ISSGRS, 8-12

response codes, 6-3, C-4
ISSGSA, 14-4
ISSGSO, 14-2
ISSGSS, 14-7

phase codes, 6-3, C-5
ISNS subroutines, using BIND with,

7-3

lndex-2

Index

ISNSC, 7-5
ISNSL, 7-7
ISNSRC, 7-8
ISNSUC, 7-9
ISSRM, 10-12
ISSRS, 8-3
ISSSM, 10-9

examples, 9-11
ISSSTA, 14-10
ISSTS, 11-3

to reject a session request, 8-10

K
Key files

see: Include files

Language support
include files, 6-4, C-l
structure files, 6-4

LIST_SERVER_NAMES command
6-3, 7-1

LIST.SESSIONS command 6-3
LLN, 7-1

cataloging, 7-3, 7-5
looking up a server's, 7-7
node name, 13-1
recatalog in HLNF, 7-8
session request using, 8-3, 8-6
structure, 7-2, E-3

Local parameters
see: Session configuration

Login
cataloging LLN during, 7-3 to 7-4
server name assigned during, 7-1
SessionRequestPending

synchronizer, 9-8
Logout

LLN invalidated, 7-4
SessionRequestPending

synchronizer, 9-8
terminates server's sessions, 6-2
uncatalog HLNE, 7-9

Low Level Name
see: LLN

Message area, 9-5
block size, 9-5
configuring, 9-5
default size, 9-5
maximum number of, D-l
maximum size, 9-5
no available space, 10-6
not allocated, 9-5, 14-9, D-l
number of blocks, 9-5
percent in use, 14-12
percent used, 14-12
sharing, 9-7, 14-9
where allocated, D-l

Message buffer
allocating, 10-5
allocation failure, 10-6, 14-12
freeing, 10-7, 10-11
modifying after sending, 10-11
ownership of, 10-8
pointer to, 10-6
reusing, 10-8

Message exchange, 6-2, 10-1
creating a message, 10-1
sequence of events, 10-1
status, 14-8

Message queues
configuring, 9-4
not configured, 9-4
receive queue status, 10-2
selecting, 10-9
send queue status, 10-2
setting lengths, 9-4
status of, 14-9
using send queue, 9-11

Messages
after sending, 10-11, 12-1
data loss, 13-2
number pending, 14-9
see also: Connect messages,

Control part, Data part,
Expedited messages, Normal
messages, Null messages

MessageSpecifier
connect messages, 12-1
control part fields, 10-3
data part fields, 10-4
data part location, 10-6
structure, 10-3, E-3
using, 10-1, 10-3

Multiple sessions, 6-1
between the same servers, 6-1
coordinating events, 9-12
event groups for, 9-12
listing, 14-2
maximum number of, D-l
requesting a session, 8-7
sharing a message area, 9-7, 14-9
synchronizer identifiers, 9-10

N
Node name, 7-3

determining your own, 7-3
in LLN, 7-3, 13-1
of other server, 14-5
of session initiator, 8-8
of session recipient, 8-14

Nodes, session between different
1-3, 13-1

Normal messages, 1-3, 6-2
allocate data part buffer, 10-5
configuring, 9-4
control part length, 9-4
data part length, 9-4, 10-4
null messages, 6-2
number sent & received, 14-11
receiving, 10-12
sending, 10-9
see also: Message area

Notices
count returned by SYNSCHCK

4-3
initial count, 2-2, 2-5 to 2-6
order in which returned, 3-2
posting on event synchronizers,

1-1,2-1,2-3,2-7
retrieving from a synchronizer

2-1,2-3,9-11
retrieving from an event group

3^,3-16,9-10
when posted, 9-6

Null messages, 10-3, 10-10

Phantom, 6-1
server name of, 7-1

PRIMENET, 1-3, 6-1, 13-1
PRIMIX, 1-2

lndex-3

Subroutines Reference V: Event Synchronization

Priority levels
and processing speed, 3-6
determine order of response to

events, 3-3
number of specified by

SYNSGCRE, 3-2, 3-5 to 3-6
setting number of, 3-2, 3-5
specifying a level for a

synchronizer, 3-3
Process

child process, 6-1
list all, 7-10
server name of, 1-2, 7-1, 7-10
sharing a server name, 7-11
slave process, D-2

Program examples
InterServer Communications, B-8
synchronizers and groups, B-l
timers, B-6

Programming considerations
BIND with ISNS subroutines, 7-3
include files, 1-3, 6-4
limits, D-l
retrieving error messages, 1-4
structure template files, 6-4

Project ID
null, 13-2
of session initiator, 8-8

Q

Queue thresholds
configuring, 9-6
examples, 9-11
invalid value, 8-10
using, 9-11

Queues
see: Message queues

R

ReadyToReceive synchronizer
configuring, 9-6
exception notice on, 10-14
using, 10-13

ReadyToReceiveExpedited
synchronizer

configuring, 9-6
exception notice on, 10-14
in an event group, 9-12
using, 10-13

ReadyToSend synchronizer
configuring, 9-5
exception notice on, 10-11
using, 9-11, 10-11

ReadyToSendExpedited synchronizer
configuring, 9-5
exception notice on, 10-11
using, 10-11

Receiving a message, 10-1, 10-12
Recipient

see: Session recipient
Remote ID, 13-1
Remote session, 6-1

maximum number of, D-2
Repetitive timers, 5-1

cancelling, 5-15
creating, 5-7
destroying, 5-8
getting information about, 5-16
setting, 5-3, 5-14
states of, 5-4

Security
see: Authentication, HLNF

Sending a message, 10-1, 10-9
available queue space, 9-11
programming options, 9-11
retrieving notices, 10-11
when requesting a session, 8-5
when terminating a session, 11-3

Server name, 1-2, 7-1
determining, 7-10
invalidate, 7-1
listall, 7-1, 7-13
LIST_SERVER_NAMES

command, 7-1
process numbers for, 7-11

Servers
and PRIMIX, 2-1
defined for ISC, 1-2, 6-1
event groups are private to, 3-2
event synchronization within, 1-2,

2-3, 2-8
event synchronizers are private to,

2-1
getting count of event groups in,

4-13
getting count of synchronizers in,

4-11

getting count of timers in, 5-19
getting identifiers of groups in,

4-13
getting identifiers of synchronizers

in, 4-11
getting identifiers of timers in,

5-19
initialize server, 7-1
list sessions of, 14-2
process numbers for, 7-11
shared by multiple processes, 7-11
timers are private to, 5-1
see also: Server name

Session, 1-2,6-1,8-1
attributes of, 14-4
establishment, 6-2, 8-1
get request for, 8-6
get response to request, 8-12
identified by number, 8-2
initiator, 8-12
listing server's sessions, 14-2
maximum number of, D-l
message exchange, 10-1
no request pending, 8-7
participants in, 1-2
phases of, 6-2, 14-8
recipient, 8-9
remote session, 6-1, 13-1
request accepted, 8-9, 8-12
request rejected, 8-12
requesting, 6-2, 8-2 to 8-3
requests pending, D-2
server terminate, 11-5
statistics, 14-10
status of, 14-7
system cannot establish, 8-12
system terminate, 11-5
termination, 6-2, 7-1, 11-1
too many requests, 8-4
too many sessions, 8-4, 8-7
with oneself, 8-2, D-2

Session configuration, 9-1
actual parameter values, 14-6
connect message exchange, 12-2
defaults, 8-3, 9-1
errors in, 9-9
existing sessions, 9-7
get global values, 8-6
get parameter values, 14-4
global parameters, 8-3, 9-1, 9-3

lndex-4

Index

Session configuration (continued)
local parameters, 9-1, 9-5
overview, 9-3
recipient's local parameters, 8-9
reserved fields, 8-4, 8-10
setting global parameters, 9-3
setting local parameters, 8-11, 9-5
setting parameters, 8-3, 9-3

Session establishment, 8-1
calling subroutines during, 14-1
halting, 11-3
messages during, 12-1
requesting, 8-1
session attributes during, 14-6
status, 14-8

Session initiator, 8-1, 8-3, 14-6
program example, B-8

Session number, 8-2
initiator's, 8-3
recipient's, 8-6

Session recipient, 8-1, 8-6, 14-6
program example, B-14

Session request
accept or reject, 8-8
accepting, 8-2, 8-9
maximum number of, D-2
rejecting, 8-2, 11-4
requesting, 8-2 to 8-3

Session synchronizers list
see: Sessions yncList

Session termination, 11-1
calling subroutines during, 11-1,

14-1
messages during, 12-1

SessionConfigurationBlock, 9-2
null pointer, 9-1
reserved parameters, 9-3
structure, 9-2, E-4
version parameter, 9-3
see also: Session configuration

SessionRequestPending synchronizer,
9-8

identifier of, 7-10
using, 8-2, 8-7

SessionResponsePending
synchronizer

configuring, 9-6
deletion of, 9-8
notice posted on, 8-14
using, 8-2

Sessions, no sessions, 14-2
SessionstatisticsBlock, 14-11, E-5
SessionStatusBlock, 14-8, E-5
SessionSyncList, 9-9, 14-4, E-6

for session initiator, 8-3
for session recipient, 8-9

Slave processes, D-l to D-2
Software requirements, 13-1
SRS_CODES.INS.language, 1-4, 6-4,

7-2
SRSSGN, 7-10
SRSSGP, 7-11
SRSSLN, 7-13
Status codes, 6-3, C-l

FTN language, 6-4
listing, C-l
message text, 6-4
returned by ISS subroutines, C-3
returned by SRSS subroutines, C-5
returned by synchronizer

subroutines, C-l
returned by timer subroutines, C-2

Structures, 6-4
allocating space for, 6-4
listing of, E-1
programming example, 6-5
template files for, 6-4
used by ISC, E-2
used by SYNSINFO, E-1
used by TMRSGTMR, E-1 to E-2
version field, 6-5

Subroutine quick reference, A-1
SYNC_CODES.INS.language, 1-4,

2-4,64
SYNSCHCK, 4-2
Synchronizers

see: Event synchronizers, ISC
synchronizers

SYNSCK
see: SYNSCHCK

SYNSCR
see: SYNSCREA

SYNSCREA, 2-2, 2-5
SYNSDE

see: SYNSDEST
SYNSDEST, 2-4, 2-15
SYNSGC

see: SYNSGCRE
SYNSGCHK, 4-4
SYNSGCRE, 3-2, 3-5

SYNSGD
see: SYNSGDST

SYNSGDST, 3-4, 3-18
SYNSGK

see: SYNSGCHK
SYNSGL

see: SYNSGLST
SYNSGLST, 4-12
SYNSGR

see: SYNSGRTR
SYNSGRTR, 3-2, 3-4, 3-15
SYNSGT

see: SYNSGTWT
SYNSGTWT, 3-4, 3-13
SYNSGW

see: SYNSGWT
SYNSGWT, 3-3,3-11
SYNSIF

see: SYNSINFO
SYNSINFO, 4-6

structure used by, E-1
SYNSLG

see: SYNSLSIG
SYNSLIST, 4-10
SYNSLS

see: SYNSLIST
SYNSLSIG, 4-8
SYNSMV

see: SYNSMVTO
SYNSMVTO, 3-2 to 3-3, 3-7

specifies a priority level, 3-3, 3-
SYNSPO

see: SYNSPOST
SYNSPOST, 2-3, 2-7
SYNSREMV, 3-3, 3-9
SYNSRM, SYNSREMV, 3-9
SYNSRTRV, 2-3, 2-13
SYNSRV

see: SYNSRTRV
SYNSTMWT, 2-3, 2-11
SYNSTW

see: SYNSTMWT
SYNSWAIT, 2-3, 2-9
SYNSWT

see: SYNSWAIT
SYSCOM directory, 1-3, 2-4, 5-4
SYSOVL directory, 1-4

lndex-5

Subroutines Reference V: Event Synchronization

Target
see: Session recipient

TargetAuthBlock, 8-14, E-6
Templates

see: Structures
Terminating a session, 6-2, 11-1,

11-3
status, 14-8

Thresholds
see: Queue thresholds

TIMERMIK.INS.language, 1-4, 5-4
Timers, 1-1 to 1-2,2-1, 5-1

absolute, 5-1
and event groups, 3-1
cancelling, 5-3, 5-15
creating, 5-2, 5-7
deallocated by ICE -SERVER,

2-4
destroying, 5-3, 5-8
getting information about, 5-16
in F77 sample program, B-7
in PL/I sample program, B-6
interval, 5-1
maximum number of, D-l
post notices, 5-1
repetitive, 5-1
resetting, 5-3
setting, 5-2
subroutines that access, 5-1
system-defined limits for, D-l

TMRSCANL, 5-15
TMR$CN

see: TMRSCANL
TMRSCR

see: TMRSCREA
TMRSCREA, 5-2, 5-6
TMRSDE

see: TMRSDEST
TMRSDEST, 5-8
TMRSGTMR, 5-16

structure used by, E-1 to E-2
TMRSLIST, 5-19
TMRSLS

see: TMRSLIST
TMRSSA

see: TMRSSABS
TMRSSABS, 5-2, 5-9
TMRSSI

see: TMRSSINT

TMRSSINT, 5-11
TMRSSR

see: TMRSSREP
TMRSSREP, 5-13
TMRSTI

see: TMRSGTMR

u
User ID, 13-1

null, 13-2
of other server, 14-5
of session initiator, 8-8
of session recipient, 8-14
remote ID, 13-1

V
Version number, 6-5, 9-3
Virtual circuits, 13-2, D-2

w
Waiting processes

causing to resume execution, 2-3
count for group returned by

SYNSGCHK, 4-5
count for synchronizer returned by

SYNSCHCK, 4-3
time limits for, 2-11, 3-14

What_happened codes, returned by
event synchronizer
subroutines, C-2

" >

lndex-6

m ^ S u r v e y s

r

r

r
r

Reader Response Form

Subroutines Reference V: Event Synchronization
DOC10213-1LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our
user publications.

1. How do you rate this document for overall usefulness?

I | excellent \ | very good I 1 Rood I I fair I I poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I I Much better _j± Slightly better Q About the same
I I Much worse Q Slightly worse [_] Can't judge

5. Which other companies' manuals have you read?

Name:
Position:_
Company:
Address:_

.Postal Code:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	x
	About This Book
	xi
	xii
	xiii
	xiv
	Part I, Overview
	Chapter 1
	Overview of Event Synchronization
	1-1
	1-2
	1-3
	1-4
	Part II, Event Synchronizers and Event Groups
	Chapter 2
	Event Synchronizers
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	Chapter 3
	Event Groups
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	Chapter 4
	Retrieving Information About Event Synchronization
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	Part III, Timers
	Chapter 5
	Timers
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	Part IV, InterServer Communications
	Chapter 6
	General Discussion of InterServer Communications
	6-1
	6-2
	6-3
	6-4
	6-5
	Chapter 7
	Server Names
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	Chapter 8
	Establishing a Session
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	Chapter 9
	Session Configuration
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	Chapter 10
	Message Exchange
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	Chapter 11
	Session Termination and Exceptions
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	Chapter 12
	Connect Messages
	12-1
	12-2
	Chapter 13
	Remote Sessions
	13-1
	13-2
	Chapter 14
	Retrieving Session Information
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	Appendices
	Appendix A
	Quick Reference to Calling Sequences
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	Appendix B
	Sample Programs
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	Appendix C
	Status Codes
	C-1
	C-2
	C-3
	C-4
	C-5
	Appendix D
	Limits
	D-1
	D-2
	Appendix E
	Data Structures
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Appendix F
	Data Type Equivalents
	F-1
	F-2
	F-3
	Indexes
	Index of Subroutines by Function
	FX-1
	FX-2
	FX-3
	FX-4
	FX-5
	FX-6
	FX-7
	FX-8
	FX-9
	FX-10
	FX-11
	FX-12
	FX-13
	FX-14
	FX-15
	FX-16
	FX-17
	FX-18
	FX-19
	FX-20
	FX-21
	FX-22
	FX-23
	FX-24
	Index of Subroutines by Name
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	SX-14
	SX-15
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	Surveys
	
	

