39

Prime.

Subroutines Reference V:
Event Synchronization

Revision 22.0

DOC70213-1LA

vy

Subroutines Reference V:
Event Synchronization

First Edition

John Breithaupt and
Glenn Morrow

This guide documents the software operation
of the Prime Computer and its supporting
systems and utilities as implemented at
Master Disk Revision Level 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

Copyright Information

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer,
Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 4050, 4150, 6350,
6550, 9650, 9655, 9750, 9755, 9950, 9955, 995511, DISCOVER, EDMS, FM+, INFO/BASIC,
INFORM, Prime INFORMATION, Prime INFORMATION CONNECTION, Prime
INFORMATION EXL, MDL, MIDAS, MIDASPLUS, MXCL, PRIME EXL, PRIME
MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME TIMER, PRIMAN,
PRIMELINK, PRIMENET, PRIMEWAY, PRIMEWORD, PRIMIX, PRISAM, PRODUCER,
Prime INFORMATION/pc, PST 100, PT25, PT45, PT65, PT200, PT250, PW153, PW200,
PW250, RINGNET and SIMPLE are trademarks of Prime Computer, Inc.

Printing History
First Edition (DOC-10213-1LA) 1988 for Revision 22.0

Credits

Editorial: Thelma Henner

Design: Carol Smith

Project Support: Nancy Lewis, Joan Karp, Helen Raizen, Mei Ng, Evelyn Tate
Illustration: Julie Cyphers, Anne Marie Fantasia, Roseanne Dickey

Document Preparation: Mary Mixon, Kathy Normington

Composition: Julie Cyphers, Sharon Temple

Production: Judy Gordon

4 J

b

How To Order Technical Documents
To order copies of documents, or to obtain a catalog, a price list:

United States Only: Call Prime Telemarketing, toll free, at 1-800-343-2533, Monday through
Friday, 8:30 a.m. to 5:00 p.m. (EST).

International: Contact your local Prime subsidiary or distributor.

Customer Support Center

Prime provides the following toll-free numbers for customers in the United States needing
service:

1-800-322-2838 (Massachusetts)
1-800-541-8888 (Alaska and Hawaii)
1-800-343-2320 (within other states)

For other locations, contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of this
book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

3O

Contents

About This Book

Part |
Overview
Overview of Event Synchronization
Introduction
Timers
InterServer Communications
Include Files

Retrieving Error Messages

Part Il

Event Synchronizers and Event Groups
Event Synchronizers
Introduction
Event Synchronizer Subroutines
Include Files for Synchronizers
Subroutine Descriptions
SYN$CREA
SYN$POST
SYNSWAIT
SYNSTMWT
SYNS$RTRV
SYNS$DEST

Event Groups
Introduction

Event Group Subroutines
Subroutine Descriptions
SYN$SGCRE
SYNSMVTO
SYNSREMV

xi

1-1
1-1
1-2
1-2
1-3
1-4

2-11
2-13
2-15

3-1
3-1
3-1

3-5
3-7
3-9

Vi

SYNSGWT 3-11
SYN$GTWT 3-13
SYNSGRTR 3-15
SYN$GDST 3-18
Retrieving Information About

Event Synchronization 4-1
Introduction 4-1
Subroutine Descriptions 4-1
SYN$CHCK 4-2
SYN$GCHK 4-4
SYNSINFO 4-6
SYNSLSIG 4-8
SYNSLIST 4-10
SYNS$GLST 4-12

| Part Il
Timers

Timers 5-1
Introduction 5-1
Timer Subroutines 5-1
Include Files for Timers 5-4
Subroutine Descriptions | 5-5
TMR$CREA 5-6
TMRS$DEST 5-8
TMRS$SABS 59
TMRS$SINT 5-11
TMR$SREP 5-13
TMRS$CANL 5-15
TMR$GTMR 5-16
TMRSLIST 5-19

4 J

3

AR

Part IV

InterServer Communications

General Discussion of InterServer
Communications

Introduction
A Choice of Message Types

Programming Considerations

Server Names
Introduction

Server Name Subroutines
Low Level Names
Cataloging Low Level Names
ISN$C

ISNSL

ISN$RC

ISN$UC

SRS$GN

SRS$GP

SRS$LN

Establishing a Session
Introduction

Session Requests and Session Numbers
Establishing a Session

IS$RS

ISSGRQ

IS$AS

IS$GRS

6-1
6-2
6-3

7-1
7-1
7-2
7-2
7-3
7-5
7-7
7-8
7-9
7-10
7-11
7-13

8-12

vii

viii

10

11

12

Session Configuration
Introduction

The Default Session Configuration
The Session Configuration Block
Global Session Parameters

Local Session Parameters
Configuring Synchronizers
Session Synchronizers List

Using Synchronizers

Message Exchange
Introduction

Message Exchange Subroutines
Creating a Message

ISSAB

IS$FB

IS$SM

ISSRM

Session Termination and Exceptions

Introduction

Termination Subroutines

The ExceptionPending Synchronizer
IS$TS

IS$GE

IS$CE

Connect Messages
Introduction

A Connect Message Exchange

9-1
9-1
9-1
9-2
9-3
9-5
9-7

9-10

J

9

)

13

14

Remote Sessions
Introduction
Remote User ID
Network Events

Retrieving Session Information
Introduction

IS$GSO

IS$GSA

IS$GSS

IS$STA
Appendices

Quick Reference to Calling Sequences

Sample Programs
Programs Accessing Synchronizers and Groups
Programs Accessing Timers

Programs Using InterServer Communications

Status Codes

Synchronizer Status Codes

Synchronizer What_Happened Codes
Timer Status Codes

ISC Status Codes

ISC Response Codes Returned by IS§GRS
ISC Exception Codes Returned by IS$GE
ISC Phase Codes Returned by IS$GSS
SRS Status Codes

Limits
Synchronizer and Timer Limits
ISC Limits

13-1
13-1
13-1
13-2

14-1
14-1
14-2
14-4
14-7
14-10

A-1

B-1
B-1
B-6
B-8

C-1
C-1
C-2
C-2
C-3
C4
C-5
C-5
C-5
D-1
D-1
D-1

E Data Structures

Synchronizer Information Record
Absolute Timer Information Record
Interval Timer Information Record
Repetitive Timer Information Record
Attribute Identity Block

Initiator Authentication Block

Low Level Name

Message Specifier

Session Configuration Block
Session Statistics Block

Session Status Block

Session Synchronizers List

Target Authentication Block
Data Type Equivalents

Indexes
Index of Subroutines by Function
Index of Subroutines by Name

Index

E-1
E-1
E-1
E-1
E-2
E-2
E-2
E-3
E-3
E4
E-5
E-5
E-6
E-6

FX-1
SX-1
X-1

4 J

J J

M)

About This Book

Overview of This Series

The Subroutines Reference series consists of five volumes. These volumes are organized by the
functions that the subroutines perform. A brief summary of the contents of each volume is given
below.

Volume 1
Introduction to the five-volume series. It describes the nature and functions of Prime’s
standard subroutines and subroutine libraries. It explains how subroutines can be called from
programs written in Prime’s programming languages: C, CBL, FORTRAN IV, FORTRAN 77,
Pascal, PL/I, BASIC/VM, and PMA.

Volume IT
Describes file system subroutines, including subroutines for the search rules facility. It also

describes subroutines for the manipulation of EPFs in the execution environment and the use
of command environment functions.

Volume I

Describes system subroutines. The subroutines covered in this volume are general system calls
to the operating system and the standard system library. This volume includes memory
allocation and System Information and Metering (SIM) subroutines.

Yolume 1V
Describes the Input/Output Control System (IOCS) libraries and other I/O-related subroutines.
It documents both device-dependent and device-independent subroutines and Sync and Async
device-driver subroutines. It also documents Application libraries, the SORT libraries, and
MATHLIB, the FORTRAN Matrix library. Many of these subroutines are of special interest
for FORTRAN programmers.

VYolume V

Describes event synchronization. It documents subroutines used to create and manipulate
cvent synchronizers, and two facilities that use event synchronizers: timers and the InterServer
Communications (ISC) facility.

First Edition

Xi

Subroutines Reference V: Event Synchronization

Specifics of This Volume

Volume V describes three features of the PRIMOS® operating system: event synchronizers,
timers, and the InterServer Communications facility for message exchange between processes.

e Part I of this book, consisting of Chapter 1, offers a general overview of event
synchronization and a brief introduction to its use by two PRIMOS facilities: the
Timers facility and the InterServer Communications (ISC) facility. It also provides
programming information that is applicable to all programs that use event
synchronization.

e Part II, consisting of Chapters 2 through 4, describes in detail how to create, use,
destroy, and retrieve information about event synchronizers and event groups.

e Part III, consisting of Chapter 5, describes how to create, use, destroy, and retrieve
information about timers.

o Part 1V, consisting of Chapters 6 through 14, describes in detail the InterServer
Communications (ISC) facility, which makes it possible for processes that are running
simultaneously to exchange messages. These processes may be running on the same
system or on two different systems connected by PRIMENET™, Message exchange is
coordinated by using event synchronizers.

The following three indexes enable the reader to find information quickly:

e The Index of Subroutines by Function, a list of all of the subroutines in the five-
volume series, grouped by the general types of function that they perform. Use this
index to find out which subroutines perform a particular function, and then use the
Index of Subroutines by Name to locate the individual subroutines.

e The Index of Subroutines by Name, an alphabetical list by name of all of the
subroutines in the five-volume series. It lists the volume, chapter, and page number of
the reference material for each subroutine.

e The Index, a list of the topics treated in this volume. Use this index to find out where
in this volume a particular topic, process, or term is described.

Suggested References

The other volumes of the Subroutines Reference document set are the following:
Subroutines Reference 1: Using Subroutines (DOC10080-2LA)
Subroutines Reference II: File System (DOC10081-1LA) and updates:

Update for Rev. 21.0 (UPD10081-11A)
Update for Rev. 22.0 (UPD10081-12A)

Xii First Edition

4 J

N

3

39

About This Book

Subroutines Reference 111: Operating System (DOC10082-1LA) and updates:

Update for Rev. 21.0 (UPD10082-11A)
Update for Rev. 22.0 (UPD10082-12A)

Subroutines Reference IV: Libraries and 1/0 (DOC10083-1LA) and updates:

Update for Rev. 21.0 (UPD10083-11A)
Update for Rev. 22.0 (UPD10083-12A)

The five volumes of the Subroutines Reference and their current updates can be ordered as a set
as DCP10068.

The PRIMOS User's Guide (DOC4130-SLA) contains information on system use, directory
structure, the condition mechanism, CPL files, ACLs, and how to load and execute files with
external subroutines. Language programmers will also need the reference guides for their
particular languages.

The following related Prime publications are also available and helpful to the programmer:
PRIMOS Commands Reference Guide (DOC3108-71LA)
Programmer’s Guide to BIND and EPFs (DOC8691-1LA) and its update:

Update for Rev. 22.0 (UPD8691-11A)

Advanced Programmer’s Guide, Volume 0: Introduction and Error Codes (DOC10066-3LA)
Advanced Programmer’s Guide, Volume I: BIND and EPFs (DOC10055-1LA)

Advanced Programmer’s Guide, Volume II: File System (DOC10056-2LA)

Advanced Programmer’s Guide, Volume I11: Command Environment (DOC10057-1LA)
System Administrator’s Guide, Volume I: System Configuration (DOC10131-2LA)

System Administrator’s Guide, Volume II: Communication Lines and Controllers
(DOC10132-2LA).

System Administrator’'s Guide, Volume I11: System Access (DOC10133-2LA).
User’s Guide to Prime Network Services (DOC10115-1LA)

Operator’s Guide to Prime Networks (DOC10114-1LA)

PRIMENET Planning and Configuration Guide (DOC7532-3LA)

System Architecture Reference Guide (DOC9473-3LA)

First Edition Xiii

Subroutines Reference V: Event Synchronization

Prime Documentation Conventions

The following conventions are used in command formats, statement formats, and in examples
throughout this document. Examples illustrate the uses of these commands and statements in

typical applications.

Convention Explanation Example
UPPERCASE In subroutine descriptions, words in upper- SYN$CREA
case indicate the names of commands,
options, statements, or keywords. Enter
them in either uppercase or lowercase.
italics Words in italics represent input or output sync_identifier
parameters of subroutines, or other vari-
ables.
Parentheses In subroutine calls, you must enter parenthe- call is$ce(num, code)
() ses exactly as shown.
Hyphen Wherever a hyphen appears as the first ICE —SERVER
- character of an option, it is a required part
of that option.
Boldface New terms appear in boldface. server
First Edition

Xiv

y

N\
N

D)

MDD

Part I, Overview

r
r

Overview of Event Synchronization

Introduction

This volume describes event synchronization and two facilities that use event synchronization:
the Timers facility and the InterServer Communications (ISC) facility. Event synchronization is
a feature of PRIMOS that makes it possible to coordinate the execution of a process with
specific events exterior to the process. Timers use event synchronization to enable processes to
make their own execution time-dependent; a running process sets a timer and is informed when
that timer elapses. The InterServer Communications facility uses event synchronization to permit
a running process to exchange messages with another concurrently running process. Timers and
ISC are included in Rev. 22.0 and subsequent revisions of PRIMOS.

Event synchronization is made possible by event synchronizers. An event synchronizer is an
indicator on which PRIMOS posts a notice for each occurrence of a particular event. This
notice informs the process that the event has occurred.

While awaiting notification of an event, the process can either suspend or continue its execution.
If the process has suspended its execution, notification of an event causes it to resume
processing. If the process has not suspended its execution, PRIMOS posts a notice on a
synchronizer associated with the process when the event occurs. This notice is available to the
process, but does not interrupt its ongoing processing.

A process can create its own event synchronizers and associate each synchronizer with a specific
event. When the event occurs, PRIMOS posts a notice on the associated synchronizer.

A process can group two or more synchronizers into an event group. When an event occurs,
PRIMOS posts a notice on the associated synchronizer that is within the event group. The
process can check the event group to determine whether a notice has been posted on any of its
member synchronizers. If a notice has been posted on a member synchronizer, the process can
also determine which synchronizer has been notified. If there are no notices on any of the event
synchronizers within the group, the process can either continue its own operations, or wait on
the event group. Waiting on an event group suspends the process’ operations until a notice is
posted on any one of the synchronizers in the group.

First Edition

1-1

Subroutines Reference V: Event Synchronization

1-2

Note

The facilities described in this volume can synchronize the execution
of two or more user processes running within a single server. For
example, one process within the server can post a notice on a
synchronizer to notify other user processes within the server that an
event occurred. At Rev. 22.0, PRIMOS associates each process with
its own server when the process is initialized; therefore,
synchronization within a server is possible only for PRIMIX™ child
processes. A PRIMIX child process is always a member of its
parent’s server.

Timers

Timers are a PRIMOS facility that provide for time-dependent process synchronization. Timers
can post notices on event synchronizers after an elapsed interval, periodically at a fixed interval
of time, or at a particular time on the system clock. User processes can request timers to post
notices at any appropriate time or intervals of time.

InterServer Communications

InterServer Communications (ISC) is a PRIMOS facility that provides for message exchange
between two concurrently running servers. ISC uses the term server to refer to a single process
or a group of closely cooperating processes. PRIMOS places each terminal or phantom process
in its own server when the process is initialized. A PRIMIX child process, however, is placed in
its parent’s server. A process can determine its own server name and can also make it possible
for other processes to look up its server name. You must know the server name of another
server before you can exchange messages with that server. Server name operations are described
in Chapter 7.

ISC provides each server with several event synchronizers that are associated with specific
events. It uses these synchronizers to inform each server of the operations performed by the
other server. These operations include the establishment of a link between the servers and the
exchange of messages. This permits a server to either suspend processing or perform other
operations while awaiting a specific ISC event.

Message exchange occurs within a session. A session is a one-to-one link between two active
servers. To create this link, one server requests the session and the other accepts the session
request. Only two servers can participate in a session; each server can both send and receive
multiple messages with the other server participating in the session. A server that is not a
participant in the session cannot read messages or otherwise interact with the session. The
session continues until either of the servers explicitly terminates the session, or a server is
terminated (for example, by a user logout).

First Edition

y

J J

r
r

Overview of Event Synchronization

Each server can participate in multiple concurrent sessions. A session can involve two servers on
the same system, or two servers on different PRIMENET nodes. ISC automatically handles the
interface with PRIMENET, making an ISC session across PRIMENET nodes appear identical to
ISC processing within the same node.

ISC supports several different kinds of messages:

e Normal Messages are messages sent during an established session. A Normal
message can consist of two parts; a control part for short messages and a data part for
longer messages. A Normal message consisting of both parts can be up to 32,886
characters in length. Information of any type can be sent in either the control part or
the data part of a message.

o Expedited Messages are messages sent during an established session. Expedited
messages are short messages that consist of a control part only. Expedited messages
and Normal messages are placed in separate queues. This enables a server to read all
of its Expedited messages first, then read its Normal messages.

¢ Connect Messages are messages sent while establishing or terminating a session. You
can use these short messages rather than fully establishing a session if only a single
brief message exchange is required.

Include Files

The SYSCOM directory contains a number of include files that a program must include if it
calls subroutines for event synchronizers, timers, or ISC. The include files define key values that
correspond to numeric values returned or expected by the subroutines. A program should
reference the key values defined in these files, rather than their numeric equivalents. The include
files provide templates for data structures used by some subroutines.

Event synchronizers, timers, and ISC each have their own include files. Different versions of
each include file are provided for different programming languages. For example, the include
file for event synchronizers exists in separate versions for FTN, PL/I, Pascal, C, and PMA.

Table 1-1 lists the include files in the SYSCOM directory, and the subroutines that use each file.
In the include file names, replace language with the suffix for the language in which the
program is written.

First Edition

1-3

Subroutines Reference V: Event Synchronization

4 J

Table 1-1

SYSCOM Include Files
Include File Contents
SYNC_CODES.INS.language Codes for SYN$ subroutines
TIMERMIK.INS.language Codes for TMRS$ subroutines
ISC_KEYS.INS.language Codes for IS$ subroutines
SRS_CODES.INS.language Codes for SRS$ subroutines
ISC_STRUCTURES.INS.language Structure templates for IS$ subroutines

These SYSCOM include files are described more fully in the chapters on synchronizers, timers, ‘
and ISC.

Retrieving Error Messages

Always use ER$PRINT and ER$TEXT, rather than ERRPR$ or ERTXTS, to retrieve error
messages for timers, event synchronizers, or ISC. ER$PRINT prints a message on a terminal,
and ER$TEXT returns a message to a variable. “N

ER$PRINT and ER$TEXT retrieve ERRD error messages and subsystem-specific error
messages. To retrieve error messages, ERSPRINT and ER$TEXT first look for a specified
message file in the SYSOVL directory. If the specified message file does not exist in SYSOVL,
ER$PRINT and ER$TEXT retrieve the error message from PRIMOS internal tables, which are
in English.

Programs that call ER$PRINT and ERS$TEXT must include the SYSCOM include file
ErrorMsgHdlr.INS.language, where language is the suffix for the language of the calling
program. ‘

For more information about ER$PRINT and ER$TEXT, see the Subroutines Reference III:
Operating System.

N

1-4 First Edition ‘\

I

Part Il, Event Synchronizers and Event Groups

Event Synchronizers

Introduction

Event synchronizers make it possible to synchronize user processes with facilities of the

r PRIMOS operating system. These facilities include timers and the InterServer Communications
(ISC) subsystem. Timers and ISC use event synchronizers to signal to user processes that certain
events occurred. The user processes can base their subsequent actions on the occurrence or
nonoccurrence of these events. See Part III for information about timers, and Part IV for
information about ISC.

Event synchronizers can be used to synchronize PRIMOS facilities and user processes as
follows:

r ¢ When a PRIMOS facility wants to indicate to a user process that an event occurred, it
can post a notice on an event synchronizer.

o If a process needs to know whether a particular event occurred before it takes further
action, the process can retrieve a notice of an event on the event synchronizer, if one
was posted.

e If a process has nothing to do until a particular event occurs, the process can wait
until there is a notice of an event on a particular synchronizer. The process can wait
for the event indefinitely, or it can set a limit to the length of time that it will wait.

‘,, An event synchronizer is private to a single server and cannot be accessed by other servers.

Some user processes may need to know whether any one of a group of possible events occurred.
Such a process can access a group of event synchronizers, known as an event group, to
determine whether there is a notice of an event on any of the synchronizers in the group. The
process can wait for notices to be posted on event groups, either indefinitely or for a limited
length of time.

Note

Synchronizers can also be used to synchronize the activities of
processes within the same server. The only multiprocess servers
currently supported are servers running PRIMIX where child
processes are running.

(‘ First Edition 2-1

Subroutines Reference V: Event Synchronization

2-2

Processes must call subroutines to create, use, and destroy event synchronizers and event groups.
This chapter describes the subroutines for event synchronizers. Chapter 3 describes subroutines
for event groups.

Event Synchronizer Subroutines

Table 2-1 lists the event synchronizer subroutines. See Table 3-1 for a list of the event group
subroutines. Programs written in FTN must use the six-character subroutine names listed.

Table 2-1

Event Synchronizer Subroutines
Name Function
SYNSCREA Creates a synchronizer
SYN$CR
SYNS$POST Posts a notice on a synchronizer
SYN$PO
SYNSWAIT Waits on a synchronizer
SYNS$WT
SYNSTMWT Performs a timed wait on a synchronizer
SYNSTW
SYNSRTRV Retrieves a notice from a synchronizer
SYNS$RV
SYNS$SDEST Destroys a synchronizer
SYNS$DE

The following paragraphs summarize the functions that synchronizer subroutines perform.

Creating Synchronizers

To create an event synchronizer, a process calls the subroutine SYNSCREA. SYNSCREA
assigns an identifier to the synchronizer. This identifier becomes an input parameter to other
subroutines that access the synchronizer. The process that calls SYN$SCREA specifies the
number of notices that are to be on the synchronizer when it is created. This number must be
greater than or equal to 0.

First Edition

J

2,0

D)

Event Synchronizers

Posting Notices on Synchronizers

When a process in a multiprocess server needs to indicate to other processes within that server
that a particular event occurred, it can call the subroutine SYN$POST. SYNSPOST posts a
notice on a synchronizer within the same server as the process that calls SYN$POST. If no
processes are waiting on or performing a timed wait on the synchronizer (sce below), posting the
notice increases the synchronizer’s notice count by 1. If processes are waiting, posting the notice
causes one process to resume execution. At PRIMOS Rev. 22.0, synchronization within a server
is possible only for PRIMIX child processes.

Waiting on Synchronizers

When a process needs to wait until a particular event occurs before taking further action, it can
call the subroutine SYN$SWAIT to wait on a particular event synchronizer. If there are no
notices on the event synchronizer, the process that calls SYN$SWAIT suspends its own operation
until another process posts a notice on the synchronizer. If there are notices on the synchronizer,
the process that calls SYN$SWAIT continues its operations. When a process attempts to wait on a
synchronizer that has a notice count of 1 or more, it decreases the synchronizer’s notice count by
1 and continues to run. Any number of processes within a server can wait on a synchronizer.

Performing a Timed Wait on Synchronizers

A process that needs to wait on a synchronizer may need to set a limit to the amount of time that
it will wait. Such a process can call the subroutine SYNSTMWT to perform a timed wait on the
synchronizer. A process that performs a timed wait on a synchronizer suspends its own operation
until another process posts a notice on the synchronizer or until an interval of time passes. The
process that calls SYNSTMWT specifies the length of this interval. When a process attempts to
perform a timed wait on a synchronizer that has a notice count of 1 or more, it decreases the
notice count by 1 and continues to run. Any number of processes within a server can perform a
timed wait on a synchronizer.

Retrieving a Notice from an Event Synchronizer

A process that wants to find out whether an event occurred, but does not want to wait on a
synchronizer, can call the subroutine SYN$RTRYV to retrieve a notice from a synchronizer. If the
synchronizer’s notice count is 1 or more, the retrieving process decreases the count by 1. If the
synchronizer has no outstanding notices, SYN$RTRV does nothing to the synchronizer and
indicates to the calling process that there are no notices on the synchronizer.

First Edition

Subroutines Reference V: Event Synchronization

Destroying Event Synchronizers

When a synchronizer is no longer needed, a user process can call the subroutine SYN$SDEST to
destroy the synchronizer. Before destroying an event synchronizer, be sure to cancel any timers
that are to post notices on it. If an event synchronizer is destroyed while a timer is set to post
notices on it, notices could eventually be posted inappropriately on another event synchronizer.

The INITIALIZE_COMMAND_ENVIRONMENT (ICE) command with the —SERVER option
deallocates all event synchronizers and timers belonging to a user process. The ICE command
with the -SERVER option also logs out any child processes belonging to the user process. The
ICE command without the ~SERVER option does not affect event synchronizers or timers. Sce
the PRIMOS Commands Reference Guide for information about the ICE command.

Include Files for Synchronizers

The SYSCOM directory contains a number of include files for programs that invoke synchronizer
subroutines. The include files define certain key values that correspond to numeric values returned
by synchronizer subroutines. These key values serve as status codes and other arguments. The
include files also define templates for data structures used by synchronizer subroutines.

There are separate include files for different programming languages. A program that calls
synchronizer subroutines should include the synchronizer include file for its language and use
the key values defined in the file, rather than their numeric equivalents.

The names of the include files for synchronizers are of the form
SYNC_CODES.INS.language

where language is an abbreviation specifying the programming language. For example, the
synchronizer include file for PL/I is

SYNC_CODES.INS.PL1

Before writing a program that invokes synchronizer subroutines, consult the include file for the
program’s language to determine the correct key values for that language.
Note

Because of the name length limits of the FTN language, the key values
in the FTN key file are substantially different from those in other
language files. Appendix C lists the FTN keys used as returned codes.

Subroutine Descriptions

This section contains descriptions of the subroutines that create, use, and destroy evcent
synchronizers. In the subroutine descriptions, the data type declarations (DCL statements), status
codes, and what_happened codes are in PL/I format.

First Edition

1 9

~
N

Event Synchronizers

SYN$CREA
SYN$CR

Creates an event synchronizer.

Usage
DCL SYN$CREA ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL SYNS$CREA (count, sync_identifier, code);

Parameters

count

INPUT. The number of notices that the event synchronizer is to have when it is created. This
number must be greater than or equal to 0.

sync_identifier
OUTPUT. The identifier of the synchronizer that SYN$CREA created. This value can be
NullSyncNum or a value greater than 0. The value of NullSyncNum is defined in the
synchronizer include file.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK

The call to SYNSCREA was completed without error. Any other code indicates that
SYNS$SCREA failed to create a synchronizer and assigned the value NullSyncNum to
sync_identifier.

SYN_SC$NoResources

The system is not able to allocate resources for an event synchronizer. The process that
calls SYNSCREA may be able to solve this problem by releasing kernel resources that it
is not currently using, such as synchronizers, groups, or timers, and then reexecuting the
call.

SYN_SCS$InvNoticeCount
The value specified for the parameter count is invalid, because it is negative.

SYN_SC$MaxSyncsAlloc

The maximum number of synchronizers or groups allowed for a server has already been
allocated and no more can be created. To solve this problem, destroy an event
synchronizer or an event group on the server.

First Edition

SYN$SCREA

2-5

Subroutines Reference V: Event Synchronization

SYNSCREA

2-6

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNS$CREA creates a new event synchronizer and returns a value to sync_identifier to represent
it. To access the new synchronizer, a process must reference the value that SYNSCREA returns
to sync_identifier.

The process that calls SYNSCREA specifies the initial notice count of the synchronizer. This
count represents the number of times that a particular event has already occurred at the time
when the synchronizer is created. In most cases, a process should specify an initial notice count
of 0 in its call to SYNSCREA.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J J

~~
N

ol

Event Synchronizers

SYN$POST
SYN$PO

Posts a notice on an event synchronizer.

Usage
DCL SYN$POST ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSPOST (sync_identifier, code);

Parameters

sync_identifier
INPUT. The identifier of the event synchronizer on which SYN$POST is to post a notice.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SCS$OK
The call to SYN$POST was completed without error.

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer. Either the specified
synchronizer does not exist or the maximum number of pending notices for that
synchronizer has been exceeded. See Appendix D.

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNS$SPOST posts a notice on the event synchronizer specified by sync_identifier. SYNSPOST
can post notices on synchronizers that stand alone or on synchronizers that are in event groups.
See Chapter 3 of this volume for more information about event groups.

If there are no processes waiting on the event synchronizer specified by sync_identifier,
SYNS$POST increases the synchronizer’s notice count by 1. If at least one process is waiting on
or performing a timed wait on this synchronizer, SYN$POST allows a process that is waiting on
the synchronizer to run but does not change the synchronizer’s notice count.

First Edition

SYN$POST

Subroutines Reference V: Event Synchronization

SYNSPOST

2-8

Note

Currently, SYNSPOST is of use primarily in servers running under
PRIMIX where child processes are running. SYN$POST makes it
possible to synchronize the activities of the processes within such a
server.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

) J

.

] >
/

N

3

r

-
r

Event Synchronizers

SYNSWAIT
SYNSWT

Waits on an event synchronizer that is not in an event group.

Usage
DCL SYN$SWAIT ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSWAIT (sync_identifier, code);

Parameters

sync_identifier
INPUT. The identifier of the event synchronizer on which the process is to wait.

OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSWAIT was completed without error.

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC3$SyncInGroup
The synchronizer specified by sync_identifier is currently part of an event group.
SYNSWAIT did nothing because it cannot wait on a synchronizer that is part of an
event group.

SYN_SC$NoResources

Resources are not available to enable the process to wait on the synchronizer specified
by sync_identifier.

SYN_SC$WaitHasAborted
The wait was ended by a software interrupt. When this happens, the handler of the
software interrupt usually reexecutes the call to the subroutine; in this case, the status
SYN_SC$WaitHasAborted is not reported. In some cases, however, the handler may not
reexecute the subroutine, allowing SYN_SC$WaitHasAborted to be reported.

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

First Edition

SYNSWAIT

Subroutines Reference V: Event Synchronization

SYNSWAIT

2-10

Discussion

SYNSWAIT checks the notice count of a synchronizer and bases its subsequent actions on
whether there are notices on the synchronizer.

If there are notices on the synchronizer when the process calls SYNSWAIT, SYN$SWAIT
decreases the synchronizer’s notice count by 1 and allows the process that called SYNSWAIT to
continue to run.

If there are no notices on the synchronizer, SYNSWAIT causes the calling process to wait until
a notice is posted on the synchronizer. When a notice is posted on the synchronizer,
SYNS$SWAIT allows the calling process to run again.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J J

)
N

)

Event Synchronizers
SYNS$TMWT

SYN$STMWT
SYNSTW

Performs a timed wait on an event synchronizer that is not in an event group.

Usage

DCL SYNSTMWT ENTRY (FIXED BIN(15), FIXED BIN(31), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSTMWT (sync_identifier, wait_time, what_happened, code);

Parameters

sync_identifier
INPUT. The identifier of the event synchronizer on which the process that calls SYNSTMWT
is to perform a timed wait.

wait_time
INPUT. The greatest amount of time that the calling process will wait for a notice to be
postcd on the event synchronizer. Specify wait_time in milliseconds. Currently, the system
rounds the wait_time value down to the next lower multiple of 100 milliseconds. wait_time
cannot be 0.

what_happened

OUTPUT. SYNSTMWT retumns this code only when it returns the code SYN_SC$OK.
what_happened indicates why SYN$TMWT is enabling the process to run again. The
possible codes are:

SYN_WHC$Notice

The synchronizer had notices when SYNSTMWT was called, or a notice was posted on
the synchronizer before wait_time elapsed.

SYN_WHC$TimeOut

There were no notices on the synchronizer when SYN$STMWT was called and the
amount of time specified by wait_time passed without a notice being posted on the
event synchronizer.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSTMWT was completed without error.

First Edition 2-11

Subroutines Reference V: Event Synchronization

SYN$TMWT

2-12

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC$InvTimelnt
The value of wait_time is invalid because it is not greater than 0.

SYN_SC$SyncInGroup
The synchronizer whose number is specified by sync_identifier is in an event group.
SYNSTMWT did nothing because it cannot wait on a synchronizer that is part of an
event group.

SYN_SC$NoResources

Resources are not available to enable the process to perform a timed wait on the
synchronizer specified by sync_identifier.

SYN_SC$WaitHasAborted

The wait was ended by a software interrupt. When this happens, the handler of the
software interrupt usually reexecutes the call to the subroutine; in this case, the status
SYN_SC$WaitHasAborted is not reported. In some cases, however, the handler may not
reexecute the call to the subroutine, allowing SYN_SC$WaitHasAborted to be reported.

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSTMWT checks the notice count of a synchronizer and bases its subsequent actions on
whether there are notices on the synchronizer.

If there is at least one notice on the synchronizer when a process calls SYNSTMWT,
SYNSTMWT decreases the synchronizer’s notice count by 1, rcturns SYN_WHCS$Notice to
what_happened, and allows the process to continue to run.

If there are no notices on a synchronizer when a process calls SYNSTMWT, SYNSTMWT
causes the process that calls it to wait until a notice is posted on the synchronizer, or until a
specified amount of time passes. The process that calls SYNSTMWT specifies this amount of
time. When a notice is posted on the synchronizer or the interval of time elapses, SYNSTMWT
enables the process that called it to run again.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

4 J

™
N

3D

Event Synchronizers

SYNS$RTRV

SYN$RTRV
SYN$RV

Retrieves a notice from an event synchronizer that is not in an event group.

Usage
DCL SYNSRTRYV ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL SYNSRTRY (sync_identifier, what_happened, code);

Parameters

sync_identifier :
INPUT. The identifier of the event synchronizer from which SYN$RTRYV is to retrieve a
notice.

what_happened

OUTPUT. A code that tells the caller of SYNSRTRV whether or not SYN$RTRYV retrieved a
notice from the synchronizer. The possible codes are:

SYN_WHCS$Notice
SYNS$RTRY retrieved a notice from the synchronizer.

SYN_WHC$NoNotice
There were no notices on the synchronizer for SYN$RTRYV to retrieve.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSRTRV was completed without error.

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup

SYN$RTRYV cannot retrieve a notice from the synchronizer specified by sync_identifier
because the synchronizer is a part of an event group.

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

First Edition 2-13

Subroutines Reference V: Event Synchronization

SYNSRTRV

2-14

Discussion

A process should call SYNSRTRV when it wants to note whether an event occurred before
taking some action, but does not want to wait. SYNSRTRYV never causes the process that calls it
to wait.

If there is a notice on the synchronizer, SYN$RTRYV decreases the synchronizer’s notice count
by 1. If there is no notice on the synchronizer, SYN$SRTRYV does nothing to the synchronizer.

SYNSRTRY returns to what_happened a code indicating whether or not it retrieved a notice.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J

N

Event Synchronizers
SYNS$DEST

3

SYNS$SDEST
SYN$DE

Destroys an event synchronizer.

Usage
DCL SYNSDEST ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSDEST (sync_identifier, code);

Parameters

sync_identifier
INPUT. The identifier of the event synchronizer that SYN$DEST is to destroy.

code
OUTPUT. The synchronizer status code. The possible codes are:

’- SYN_SC$OK
‘ The call to SYNSDEST was completed without error.

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup

The synchronizer specified by sync_identifier cannot be destroyed because it is in an
event group. Before the process can destroy the synchronizer, it must call the subroutine

r SYNSREMYV to remove the synchronizer from the event group. See Chapter 3 of this
volume for information about event groups.

SYN_SC$SyncHasWaiter

The synchronizer specified by sync_identifier cannot be destroyed because one or more
processes are waiting on it.

SYN_SC$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

-

-

r First Edition 2-15

Subroutines Reference V: Event Synchronization

SYNSDEST

2-16

Discussion

SYNS$DEST destroys an event synchronizer, but does not destroy references to this synchronizer
in the database of the process that calls SYN$DEST. The process that calls SYN$SDEST should
destroy these references. SYN$CREA can reassign the identifier of a destroyed synchronizer to

a new synchronizer.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

4 I

)

h

-
r

Event Groups

Introduction

An event group is a group of event synchronizers. The event group enables a user process to
determine whether any one of a group of events has taken place. PRIMOS facilities, such as
timers and ISC, can post notices on any of the synchronizers in an event group, as well as on
synchronizers that are not in a group. Each synchronizer in the event group can represent a
different event. User processes can use event groups in the following ways:

o If a user process needs to know whether any one of a group of events occurred
before it takes further action, the process can access the event group to determine
whether the notice of an event has been posted on any of the synchronizers in the
group.

¢ If a user process has nothing to do until one of the events in the group occurs, the
process can wait until a notice is posted on one of the synchronizers in the event
group. The process can wait indefinitely, or it can set a limit to the amount of time
that it will wait.

This chapter describes the system subroutines that user processes can call to create, use, and
destroy event groups.

Event Group Subroutines

Table 3-1 lists the subroutines that create, use, and destroy event groups. Programs written in
FTN must use the six-character subroutine names listed.

First Edition

3-1

Subroutines Reference V: Event Synchronization

3-2

Table 3-1
Subroutines Dealing with Event Groups
Name Function
SYNSGCRE Creates an event group
SYNS$GC
SYNSMVTO Moves a synchronizer into an event group
SYN$SMV
SYN$REMV Removes a synchronizer from an event group
SYN$RM
SYN$GWT Causes a process to wait on an event group
SYN$GW
SYNSGTWT Causes a process to perform a timed wait on
SYN$GT an event group
SYN$GRTR Retrieves a notice from an event group
SYN$GR
SYNSGDST Destroys an event group
SYN$GD

The following sections summarize the functions that event group subroutines perform.

Creating Event Groups

To create an event group, a user process calls the subroutine SYNSGCRE. SYN$GCRE assigns
an identifier to the group. This identificr becomes an input parameter to other subroutines that
access the group. SYN$GCRE creates the group empty, with no synchronizers in it. Before a
process can use an event group that it created, the process must move event synchronizers into
the event group (sec SYNSMVTO below).

SYN$GCRE also specifies the number of priority levels that the group can use. The priority
levels of an event group determine the order in which the group returns notices of events to
processes.

Except when a process specifies a particular priority level (see SYN$SGRTR below), a notice is
returned from a synchronizer at the highest priority level where there are synchronizers with
notices. Notices arc returned from lower priorities only when there are no notices at higher
priorilties.

The process that creates the event group specifies the number of different priority levels that the
group can have. The priority levels are numbered, with 1 representing the highest priority.

An event group is private to a single server and cannot be accessed by other servers.

First Edition

) J

D)

3

Event Groups

Moving Synchronizers Into Event Groups

To be more useful than an individual synchronizer, an event group must have at least two event
synchronizers in it. To move an event synchronizer into an event group, a process calls the
subroutine SYN$SMVTO. If a synchronizer is already part of a group, SYNSMVTO removes the
synchronizer from this current group before moving it into a different group.

In its call to SYNSMVTO, a process specifies a For Client Use field for the synchronizer. The
For Client Use field is returned to a process when the process receives a notice of an event from
the synchronizer. The For Client Use ficld can enable the process to identify the particular event
associated with the synchronizer. For example, the For Client Use field might contain characters
that identify the event for which a notice was posted, or a pointer to a record that contains
information about the event.

In its call to SYNSMVTO, a process also specifies the priority level into which SYN$SMVTO is
to move the synchronizer. A user process should move synchronizers into different priority
levels based on the order in which it wants to respond to different events.

Removing an Event Synchronizer from an Event Group

When an event synchronizer is no longer needed in an event group, a process can call the
subroutine SYNSREMV to remove it from the group. When the process removes the
synchronizer, any notices on that synchronizer remain with it. After a synchronizer has been
removed from a group, it can be accessed individually.

Waiting on Event Groups

When a process needs to wait until a notice of an event is posted on one of the synchronizers in
a group, it can call the subroutine SYNSGWT to wait on the group.

If there is a notice on any of the synchronizers within the group when the process calls
SYNSGWT, SYNSGWT decreases by 1 the notice count of a synchronizer at the highest priority
level where there are synchronizers with notices, returns to the waiting process the identifier and
For Client Use field of this synchronizer, and allows this process to continue to run.

If there are no notices on any of the synchronizers in the group, the process that calls
SYNSGWT suspends its own operations until another process posts a notice on one of the
synchronizers in the group. When a process posts a notice on a synchronizer within the group,
SYNSGWT returns the identifier and the For Client Use field of this synchronizer to the process
that called SYN$SGWT, and allows this process to run again.

First Edition

Subroutines Reference V: Event Synchronization

Performing a Timed Wait on an Event Group

A process can set a limit to the amount of time that it will wait for a notice to be posted on an
event group by calling the subroutine SYN$SGTWT to perform a timed wait on the group. The
calling process specifies the maximum amount of time that it will wait.

If there is a notice on any of the synchronizers in the group when the process calls
SYNSGTWT, SYNSGTWT decreases by 1 the notice count of a synchronizer at the highest
priority level where there are synchronizers with notices, returns the identifier and the For Client
Use field of this synchronizer to the process that called SYN$SGTWT, tells the calling process
that there was a notice on the group, and allows the calling process to continue to run.

If there are no notices on any of the synchronizers in the group when a process calls SYN$SGTWT,
the process waits until a notice is posted on a synchronizer within the event group, or until an
interval of time passes. The process that calls SYNSGTWT specifies this interval of time. If a notice
is posted on one of the synchronizers in the group before the interval of time elapses, SYNSGTWT
returns the identifier and For Client Use field of this synchronizer to the calling process, allows the
calling process to run again, and indicates to the process that a notice was posted. If the interval of
time passes without a notice being posted on a synchronizer in the group, SYN$SGTWT allows the
calling process to run again and indicates to the process that the interval of time elapsed.

Retrieving Notices from Event Groups

A process that wants to find out whether there is a notice on any of the synchronizers in the
group but does not under any circumstances want to wait can call the subroutine SYN$SGRTR.
SYNS$SGRTR indicates to the calling process whether there are notices on the group, and returns
a notice to the process if one has been posted. SYNSGRTR never causes the process that calls it
to wait.

SYN$GRTR can retrieve notices from the entire group, or only from synchronizers at a certain
priority level. The latter capability is useful when a process wants to retrieve a notice of events
at a certain priority level.

Destroying Event Groups
When an event group is no longer needed, a user process can call the subroutine SYN$GDST to
destroy the group. When a process destroys a group, the synchronizers within the group remain

as individual synchronizers. The individual synchronizers retain the notices that they had when
the event group was destroyed.

Subroutine Descriptions
This section contains descriptions of the subroutines that create, use, and destroy event groups.

In the subroutine descriptions, the data type declarations and the possible values for the
parameters code and what_happened are in PL/I format.

First Edition

))

7)

D

Event Groups

SYN$GCRE
SYN$GC

Creates an event group.

Usage
DCL SYN$SGCRE ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL SYN$GCRE (priority_levels, group_identifier, code);

Parameters

priority_levels

INPUT. The number of different priority levels within this event group. This number can
range from 1 to MaxPriorities, with 1 representing the highest priority. The value of
MaxPriorities is defined in the include file for synchronizers.

group_identifier
OUTPUT. The identifier of the event group that SYN$GCRE created. If the status code is not
SYN_SC$OK, SYNSGCRE returns NullSyncNum to group_identifier. The value of
NullSyncNum is defined in the include file for synchronizers.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYN$GCRE was completed without error. Any code other than
SYN_SC$OK indicates that SYNSGCRE failed to create an event group and assigned
the value NullSyncNum to group_identifier.

SYN_SC$NoResources

The system is not able to allocate resources for a new event group. The calling process
may be able to solve this problem by releasing resources that it is not currently using,
such as other synchronizers or timers.

SYN_SC$InvPriority

The value specified by priority_levels is not within the valid range for priorities, which
is from 1 to MaxPriorities.

SYN_SC$MaxSyncsAlloc

The maximum number of synchronizers or groups allowed for this server has already
been created on this server. To enable the calling process to create an event group,
destroy an event synchronizer or an event group on the scrver.

First Edition

SYN$GCRE

3-5

Subroutines Reference V: Event Synchronization

SYN$GCRE

3-6

SYN_SC$InternalError

An unexpected éystem error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNS$GCRE creates an event group and returns the group’s identifier to the argument
group_identifier. The identifier is used as an input parameter to other subroutines that access the
event group. The process that calls SYN$SGCRE specifies in priority_levels thc number of
different priority levels that the group is to have.

SYNSGCRE creates an event group with no synchronizers in it. Processes must call
SYNSMVTO to move synchronizers into event groups.

Note

The use of priority levels can lower the speed at which groups return
notices through SYN$GRTR, SYN$GWT, and SYNSGTWT. The
lower the priority level of a synchronizer, the more processing time is
required to return a notice from that synchronizer.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J

)
N

M)

Event Groups

SYNSMVTO
SYN$SMV

Moves an event synchronizer into an event group.

Usage

DCL SYNSMVTO ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
(3) FIXED BIN(15), FIXED BIN(15));

CALL SYN$SMVTO (group_identifier, sync_identifier, priority_level,
Jor_client_use, code);

Parameters

group_identifier
INPUT. The identifier of the event group into which the event synchronizer specified by
sync_identifier is 10 be moved.

sync_identifier
INPUT. The identifier of the event synchronizer to be moved into the event group specified
by group_identifier.

priority_level

INPUT. The priority level at which SYN$SMVTO is to move the event synchronizer into the
event group. This value can range from 1, the highest priority level, to the value specified for
priority_levels in the call to SYNSGCRE that created the event group.

for_client_use
INPUT. A value that is returned to a process when a notice is returned to it from synchronizer
sync_identifier. The calling process specifies the for_client_use value. PRIMOS does not use
or alter the for_client_use value in any way. See the descriptions of the subroutines
SYNSGWT, SYN$SGTWT, and SYN$GRTR for information about when subroutines return
the For Client Use field to a process.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SCS$OK
The call to SYNSMVTO was completed without error.

SYN_SC$InvGroupNum
group_identifier does not specify a valid event group.

First Edition

SYN$MVTO

Subroutines Reference V: Event Synchronization

SYNSMVTO

3-8

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC$SyncHasWaiter
The event synchronizer specified by sync_identifier cannot be moved into an event
group because a process is currently waiting on the synchronizer.

SYN_SC$InvPriority
The value of priority_level is outside the range of legal priority levels for the event
group specified by group_identifier. The range of legal priority levels for the event
group is set by the process that calls SYN$SGCRE to create the group.

SYN_SCSInternalError »
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSMVTO moves an event synchronizer into an existing event group. If the synchronizer has
notices, it retains them when SYNSMVTO moves it into the event group. Thus, executing
SYN$SMVTO could enable one or more processes that are waiting or performing a timed wait on
the event group to run again. If the synchronizer is already in an event group when
SYNSMVTO is executed, SYNSMVTO removes the synchronizer from its original group, even
if processes are waiting on this group. A synchronizer cannot be in more than one event group at
a time.,

The process that calls SYNSMVTO specifies the priority level into which SYNSMVTO moves
the synchronizer. More than one event synchronizer can be at the same priority level. The calling
process should move synchronizers into priority levels based on the order in which it would like
to process events, given that they occur at the same time.

The For Client Use field provides a way to associate a name or other information with each
synchronizer in a group. For example, the For Client Use field can serve as a pointer to a
structure that contains information about a particular event. Because a process can receive
information about an event from the For Client Use field, it does not have to maintain a table to
associate synchronizer identifiers with particular events.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J J

N
N

M)

Event Groups

SYN$REMV
SYN$RM

Removes an event synchronizer from an event group.

Usage
DCL SYNSREMYV ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL SYNSREMY (sync_identifier, code);

Parameters

sync_identifier
INPUT. The identifier of the event synchronizer that SYNSREMV is to remove from an
event group.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSREMYV was completed without error.

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC$SyncNotInGroup
The synchronizer specified by sync_identifier is not in an event group. The calling
process can ignore this error if all that matters is that the synchronizer not be in an event
group.

SYN_SC$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSREMYV removes an event synchronizer from an event group, making it possible for
processes to access the synchronizer individually. When SYNSREMYV removes the synchronizer,
any notices on that synchronizer are also removed from the group and remain with the
synchronizer.

First Edition

SYNSREMV

3-9

Subroutines Reference V: Event Synchronization

SYNSREMV

3-10

Note

In a multiprocess server, removing the last synchronizer from a group
could leave one or more processes waiting on a now empty group.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J J

N

Event Groups

SYN$GWT
SYN$SGWT
SYN$SGW
Waits on an event group.
Usage
DCL SYN$SGWT ENTRY (FIXED BIN(15), FIXED BIN(15), (3) FIXED BIN(15),
FIXED BIN(15));
CALL SYN$SGWT (group_identifier, sync_identifier, for_client_use, code);
Parameters
group_identifier
INPUT. The identifier of the event group on which the process that calls SYNSGWT is to
wait.
sync_identifier
OUTPUT. The identifier of the event synchronizer from which SYN$SGWT is returning a
notice. This is a synchronizer at the highest priority level where any synchronizers have
notices.
for_client_use
OUTPUT. The For Client Use field associated with the synchronizer whose number
SYNSGWT returns to sync_identifier. The value of for_client_use is specified by the process
that called SYNSMVTO to move the synchronizer into the group.
code
OUTPUT. The synchronizer status code. The possible codes are:
SYN_SC$OK
The call to SYNSGWT was completed without error.
SYN_SC$InvGroupNum
group_identifier does not specify a valid event group.
SYN_SC$WaitHasAborted
The calling process was waiting on the event group, but a software interrupt aborted its
wait. When this happens, the handler of the software interrupt usually reexecutes the call
to the subroutine; in this case, the status SYN_SC$WaitHasAborted is not scen by the
calling program. In some cases, however, the handler may not reexecute the subroutine,
allowing SYN_SC$WaitHasAborted to be seen. When this error occurs, SYN$GWT
returns NullSyncNum to sync_identifier and NullFCU to for_client_use.
First Edition _ 3-11

Subroutines Reference V: Event Synchronization

SYN$SGWT

3-12

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYN$SGWT checks whether there are notices on any synchronizers within an event group.

If there are notices, SYNSGWT decreases by 1 the notice count of a synchronizer at the highest
priority level where at least one synchronizer has a notice, and allows the calling process to
continue to run. SYN$GWT also returns to the calling process the identifier of the synchronizer
whose notice it is returning and the For Client Use field associated with this synchronizer.

If there are no notices on the group, SYNSGWT causes the calling process to wait until a notice
is posted on a synchronizer in the group. When a notice is posted, SYNSGWT allows the
process to resume exccution. Note that SYNSGWT causes the calling process to wait on an
entire group. SYNSGWT cannot cause a process to wait for a notice to be posted on an
individual synchronizer or priority level.

If the status code is not SYN_SC$OK, SYNSGWT returns NullSyncNum to sync_identifier and
NullFCU to for_client_use.

A process would call SYN$SGWT when it has nothing to do and wants to wait for a notice to be
posted on one of the synchronizers within a group.
Note

A server should never attempt to wait on an event group with no
synchronizers in it, unless there is more than one process in the
server. If a process waits on an event group with no synchronizers, it
will wait until another process moves synchronizers into the group
and posts notices on them.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J I

N
~

M)

Event Groups

SYNSGTWT
SYNSGTWT
SYNSGT
Performs a timed wait on an event group.
Usage
DCL SYNSGTWT ENTRY (FIXED BIN(15), FIXED BIN(31), FIXED BIN(15),
FIXED BIN(15), (3) FIXED BIN(15), FIXED BIN(15));
CALL SYN$GTWT (group_identifier, wait_time, what_happened,
sync_identifier, for_client_use, code);
Parameters
group_identifier
INPUT. The identifier of the event group on which SYN$GTWT is to perform a timed wait.
wait_time
INPUT. The longest amount of time that the calling process is to wait for a notice to be
posted on one of the synchronizers in the event group. Specify wair_time in milliseconds.
Currently, the system rounds the wait_time value down to the next lower multiple of 100
milliseconds.
what_happened
OUTPUT. SYN$GTWT returns this code only when it returns the code SYN_SC$OK. It tells
the calling process whether a notice was returned or wait_time elapsed. The possible codes
are:
SYN_WHCS$Notice
The group had notices when SYN$GTWT was called, or a notice was posted on the
group before wait_time elapsed.
SYN_WHC$TimeOut ‘
There were no notices on the group when SYN$SGTWT was called and the amount of
time specified by wair_time elapsed without a notice being posted on the group.
sync_identifier
OUTPUT. The identifier of the event synchronizer from which a notice is being returned.
for_client_use
OUTPUT. The For Client Use field associated with the event synchronizer whose number is
returned to sync_identifier. The value of for_client_use is specified by the process that called
SYN$MVTO to move the synchronizer into the group.
First Edition 3-13

Subroutines Reference V: Event Synchronization

SYNSGTWT

3-14

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGTWT was completed without error.

SYN_SC$InvGroupNum
group_identifier does not specify a valid event group.

SYN_SC$InvTimelnt

The value of wait_time is not valid. wait_time must not be 0. Any other value is treated
as positive.

SYN_SC$WaitHasAborted

The wait was ended by a software interrupt. When this happens, the handler of the software
interrupt usually causes the call to the subroutine to be reexecuted; in this case, the status
SYN_SC$WaitHasAborted is not seen by the calling program. In some cases, however, the
handler may not reexecute the subroutine, allowing SYN_SC$WaitHasAborted to be seen.
When this error occurs, SYNSGTWT returns NullSyncNum for sync_identifier and
NullFCU to for_client_use.

SYN_SC$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSGTWT checks whether there are notices on any synchronizer within the event group.

If there are notices when the process calls SYNSGTWT, SYNSGTWT decreases by 1 the notice
count of a synchronizer at the highest priority level where at least one synchronizer has notices
and allows the calling process to continue to run. SYN$SGTWT rcturns to the calling process the
identifier of the synchronizer whose notice count it decrcased. SYNSGTWT also returns the For
Client Use field associated with this synchronizer.

If there are no notices, SYN$SGTWT causes the calling process to wait until a notice is posted on one
of the synchronizers within the event group, or until the amount of time specified by wait_time
passes. When a notice is posted or the time interval elapses, SYNSGTWT allows the process to
resume exccution, Note that SYNSGTWT can only cause the calling process to wait on the entire
group. SYN$SGTWT cannot cause a process to wait for a notice to be posted on a particular
synchronizer in a group or at a particular priority level.

A process would call this routine when it has nothing to do and wants to wait for a notice to be
posted on one of the synchronizers in the group, but also wants to do somcthing else if no
notices arc posted within a certain amount of time.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

J

N

J J

Event Groups
SYN$GRTR

SYN$GRTR
SYNS$GR

Retrieves a notice from an event group.

Usage

DCL SYN$SGRTR ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), (3) FIXED BIN(15), FIXED BIN(15));

CALL SYN$GRTR (group_identifier, priority_level, what_happened,
sync_identifier, for_client_use, code);

Parameters

group_identifier
INPUT. The identifier of the event group from which SYN$SGRTR is to retrieve a notice.

priority_level

INPUT. The priority level at which SYN$SGRTR is to retrieve notices. priority_level must be
either AllPriorities or within the range of valid priority levels for this event group. Specify
AllPriorities to retrieve a notice from a synchronizer at the highest priority level where there
are synchronizers with notices. Specify a particular priority level to retricve a notice only
from a synchronizer at that level.

what_happened

OUTPUT. Indicates whether SYN$SGRTR retrieved a notice. SYNSGRTR returns a value to
what_happened when it returns SYN_SC$OK to code. The possible values are:

SYN_WHCS$Notice
SYNSGRTR retrieved a notice.

SYN_WHCS$NoNotice
SYNS$GRTR did not retrieve a notice.

sync_identifier
OUTPUT. The identifier of the event synchronizer from which SYN$GRTR retrieved a
notice.

for_client_use

OUTPUT. The For Client Use field associated with the event synchronizer from which
SYNSGRTR retrieved a notice. See the description of SYNSMVTO for information about
how to specify a For Client Use field.

First Edition 3-15

Subroutines Reference V: Event Synchronization
SYN$GRTR

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYN$SGRTR was completed without error.

If the status code is not SYN_SC$OK, SYNSGRTR returns NullSyncNum to
sync_identifier and NullFCU to for_client_use.

SYN_SCS$InvGroupNum
group_identifier does not specify a valid event group.

SYN_SC$InvPriority

The value of priority_level is not AllPriorities and is not within the range of priority
levels that are valid for event group group_identifier. SYNSGCRE specifies the range
of valid priority levels for a group when it creates the group.

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator,

Discussion

SYNS$GRTR retrieves a notice from an event group or from a specific priority level of an event
group, if such a notice is available. SYN$SGRTR never causes the process that calls it to wait.

When SYNSGRTR retrieves a notice, it always does the following:

¢ Returns the identifier of the synchronizer with the notice to sync_identifier
¢ Returns the For Client Use field associated with this synchronizer to for_client_use
e Returns SYN_WHCS$Notice to what_happened

If priority_level is set to AllPriorities, and if there are notices on any synchronizer in the group,
SYNSGRTR decreases by 1 the notice count of a synchronizer with a notice at the highest
priority level where at least one synchronizer has a notice.

If priority_level specifies a particular priority level, and if there are notices on any of the
synchronizers at that priority level, SYNSGRTR decreases by 1 the notice count of a
synchronizer with a notice at priority_level.

If SYN$GRTR does not find a notice on the event group or at the specified priority level,
SYNS$GRTR returns SYN_WHC$NoNotice to what_happened, NullSyncNum to sync_identifier,
and NullFCU to for_client_use.

A process should call SYN$SGRTR when it wants to retrieve a notice from any of a set of event
synchronizers but has other work to do and under no circumstances wants to wait. For example,
the calling process might be performing a relatively low priority task that requires lengthy

3-16 First Edition

J J

(. Event Groups
SYN$SGRTR

r

processing. Before the process finishes the low priority task, it might want to retrieve any higher
priority event notices that may have been posted since it began to process the low priority task.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition 3-17

-
r

Subroutines Reference V: Event Synchronization

SYN$GDST
SYN$GDST
SYN$GD
Destroys an event group.
Usage
DCL SYN$GDST ENTRY (FIXED BIN(15), FIXED BIN(15));
CALL SYNSGDST (group_identifier, code);
Parameters
group_identifier
INPUT. The identifier of the event group that SYN$GDST is to destroy.
code
OUTPUT. The synchronizer status code. The possible codes are:
SYN_SC$OK
The call to SYN$GDST was completed without error.
SYN_SC$InvGroupNum
group_identifier does not specify a valid event group.
SYN_SC$SyncHasWaiter
SYNS$GDST could not destroy the event group because at least one process was waiting
on the group.
SYN_SCS$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.
Discussion
SYN$GDST destroys an event group. A process should destroy an event group when it no
longer needs the group. SYN$GCRE can assign the identificr of a destroyed event group to a
new group. For this reason, when the calling process destroys an event group, it should remove
all references to the group identifier from its databases.
SYN$GDST does not destroy the synchronizers within an event group. Synchronizers that were
in a destroyed group retain the notice counts that they had at the time when the group was
destroyed.
3-18 First Edition

J

J J

AN

M)

Event Groups

Note

When SYNS$GDST is called to destroy a group that contains many
synchronizers, it could block other synchronizer operations of the
calling server. To avoid delaying these operations, remove each
synchronizer from a group before calling SYN$GDST to destroy the

group.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

SYN$GDST

3-19

)

Retrieving Information About
Event Synchronization

Introduction

A user process can call subroutines to get information about particular event synchronizers and
event groups. Table 4-1 lists these subroutines and the types of information that they return.
Programs written in FTN must use the six-character subroutine names listed.

Table 4-1
Subroutines Returning Information About
Synchronizers, Groups, and Timers

Name Information Returned

SYN$CHCK Number of notices; number of waiting pro-

SYNS$CK cesses

SYN$SGCHK Number of notices on a group at one or all

SYN$GK priority levels; if all levels, also returns num-
ber of waiting processes

SYNSINFO Whether synchronizer is in group, and if it is,

SYNSIF the group number, the priority level, and the
For Client Use field

SYNSLSIG List of the synchronizers in group and total

SYNSLG number

SYNSLIST List of the synchronizers in server and total

SYNSLS number

SYNSGLST List of the groups in server and total number

SYN$GL

Subroutine Descriptions

This section contains descriptions of the subroutines that return information about event
synchronizers and event groups. In the subroutine descriptions, the data type declarations and the
possible values for the parameter code are in PL/I format.

First Edition

4-1

Subroutines Reference V: Event Synchronization
SYN$CHCK

SYN$CHCK
SYNS$CK

Returns the total number of notices or the number of waiting processes on an event
synchronizer.

Usage

DCL SYN$CHCK ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSCHCK (sync_identifier, notices, waiters, code);

Parameters

sync_identifier
INPUT. The identifier of the event synchronizer about which SYN$CHCK is to return
information.

notices

OUTPUT. The current notice count of the synchronizer whose number is specified by
sync_identifier. The notice count will be greater than or equal to 0.

waiters

OUTPUT. The number of processes currently waiting on the synchronizer whose number is
specified by sync_identifier. The number of waiters will be greater than or equal to 0.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYN$SCHCK was completed without error.

SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.

SYN_SC$SyncInGroup

The synchronizer specified by sync_identifier is in an event group. SYN$CHCK cannot
check on the status of synchronizers in event groups.

SYN_SCS$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

4-2 First Edition

J I

I)

r‘

Retrieving Information About Event Synchronization

SYNS$SCHCK

Discussion

SYN$CHCK returns the synchronizer’s current notice count to notices and the number of
processes currently waiting on the synchronizer to waiters. Because a synchronizer cannot have
both notices and waiters, only one of these two values can be greater than zero.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition 4-3

Subroutines Reference V: Event Synchronization
SYN$GCHK

SYN$GCHK
SYN$GK

Returns the count of notices or waiters on an event group.

Usage

DCL SYN$GCHK ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL SYNSGCHK (group_identifier, priority_level, notices, waiters, code);

Parameters

group_identifier
INPUT. The identifier of the event group about which the calling process wants to obtain
information.

priority_level

INPUT. Specify the priority level for which SYN$SGCHK is to return the count of notices. To
get the count of notices or waiters on the entire group, specify AllPriorities. The synchronizer
include files define the value of AllPriorities.

notices

OUTPUT. The count of notices on the synchronizers in this group at the priority level
specified by priority_level. If priority_level is AllPriorities, SYN$GCHK sets notices to the
total of notices on all synchronizers in the event group.

waiters

OUTPUT. The number of processes waiting on this event group. waiters is always set to O if
priority_level is not AllPriorities.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSGCHK was completed without error.

SYN_SC$InvGroupNum
group_identifier does not specify a valid event group.

4-4 First Edition

J

J)

r
r

Retrieving Information About Event Synchronization

SYN_SC$InvPriority
The value specified by priority_level is not AllPriorities or within the range of priority
levels that are valid for this event group. The value of AllPriorities is defined by the
synchronizer include file.

SYN_SC$InternalError

An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYN$GCHK returns information about the current state of a particular event group.

If priority_level is set to AllPriorities, SYN$GCHK retumns the total number of notices on the
group to notices, and the number of processes currently waiting on the group to waiters. If
priority_level is not set to AllPriorities, SYN$GCHK returns to notices the number of notices on
all synchronizers at the priority level specified by priority_level. In this case, SYNSGCHK
retums 0 to waiters, because a process can wait only on an entire event group, and not on the
synchronizers within a group at a particular priority level.

Because a group cannot have notices and waiters at the same time, only one of the values
waiters oOr notices can be nonzero.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

First Edition

SYN$GCHK

4-5

Subroutines Reference V: Event Synchronization

SYNSINFO
SYNS$INFO
SYNSIF
Returns information about an event synchronizer’'s membership in an event group.
Usage
DCL SYNSINFO ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT), FIXED BIN(15));
CALL SYNSINFO (sync_identifier, information, code);
Parameters
sync_identifier
INPUT. The identifier of the event synchronizer about which SYNS$INFO is to return
information.
information
INPUT — OUTPUT. A pointer to a record to which SYNS$INFO returns information about
the current state of the event synchronizer specified by sync_identifier. See Discussion below
for information about the structure of this record.
code
OUTPUT. The synchronizer status code. The possible codes are:
SYN_SC$OK
The call to SYNSINFO was completed without error. If the status is not SYN_SC$OK,
any information returned is meaningless.
SYN_SC$InvSyncNum
sync_identifier does not specify a valid event synchronizer.
SYN_SCS$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.
Discussion
SYNSINFO indicates whether a particular event synchronizer is in a group; if it is, SYNSINFO
also returns the group identifier, priority level, and For Client Usc field.
4-6 First Edition

y

N

Yy

A

'
r

Retrieving Informatian About Event Synchronization

SYNSINFO
SYNSINFO returns information to the record named by the pointer information. This record has
the following structure:
dcl 1 SyncInfoRec based,
2 InGroup bit(1) aligned,
2 GroupNum fixed bin(15),
2 Priority fixed bin(15),
2 ForClient (3) fixed bin (15);
The elements of this record contain the following information:
InGroup
Set to TRUE if the synchronizer is in a group, or to FALSE (= 0) if it is not. SYN$INFO
sets the field to TRUE by setting its most significant bit to 1. If the synchronizer is not in a
group, the other elements in the record do not contain meaningful information.
GroupNum
A 16-bit integer specifying the event group to which the synchronizer belongs.
Priority
A 16-bit integer specifying the priority level of the synchronizer within the group.
ForClient
Three 16-bit integers containing the contents of the synchronizer’s For Client Use field.
Effective for PRIMOS Revision 22.0 and subsequent revisions.
First Edition 4-7

Subroutines Reference V: Event Synchronization

SYNSLSIG

4-8

SYNSLSIG
SYNSLG

Lists the total number of synchronizers within this group and the identifier of each
synchronizer.

Usage

DCL SYNSLSIG ENTRY (FIXED BIN(15), FIXED BIN(15), () FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL SYNSLSIG (group_identifier, size, list, count, code);

Parameters

group_identifier
INPUT. The identifier of the event group whose event synchronizers SYNSLSIG is to list.

size
INPUT. The size of the array list to which SYNSLSIG is to return the numbers of the event
synchronizers in the event group.

list
INPUT — OUTPUT. An array to which SYNSLSIG returns the identifiers of the event

synchronizers in the event group. The program that calls SYNSLSIG must allocate memory
for this array.

count
OUTPUT. The total count of event synchronizers in the event group.

code
OUTPUT. The synchronizer status code. The possible codes are:

SYN_SC$OK
The call to SYNSLSIG was completed without error.

SYN_SC$InvGroupNum
group_identifier does not specify a valid event group.

SYN_SC$ListTooSmall

The array list is not large enough to hold the identifiers of all the synchronizers in this
event group, and does not contain valid information. However, the information returned
to count is valid. To correct this error, the caller should allocate memory for a larger
array based on the value of count.

First Edition

4 J

J)

‘\ Retrieving Information About Event Synchronization
SYNSLSIG

SYN_SCS$InternalError
An unexpected system error occurred. Report any occurrence of this error to the System
Administrator.

Discussion

SYNSLSIG returns the total count of event synchronizers in the event group to count and the
identifiers of these synchronizers to the elements list/1] through list[count]. Use SYNSINFO to
get information about a particular synchronizer.

Note

r The execution time of SYNSLSIG is proportional to the number of
synchronizers in the event group. When the number of synchronizers
in the group is large, SYNS$LSIG should be used with caution,
because other synchronizer functions will be delayed while
SYNSLSIG is executing.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

~

" First Edition 49

Subroutines Reference V: Event Synchronization

SYNSLIST
SYNSLS

Lists the total count of synchronizers within this server and the identifier of each
synchronizer.

Usage

DCL SYNSLIST ENTRY (FIXED BIN(15), (*) FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL SYNSLIST (size, list, count, code);

Parameters

size
INPUT. The size of array list, to which SYNSLIST is to return the identifiers of the event
synchronizers in this server.

list
INPUT — OUTPUT. An array to which SYNSLIST returns the identifiers of the

synchronizers within the server. The program that calls SYNSLIST must allocate memory for
this array.

count
OUTPUT. The total count of event synchronizers within this server.

code
OUTPUT. The synchronizer stat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>